
An Introduction to the Theory of
Coalgebras

Dirk Pattinson
Institut für Informatik, LMU München

2

Contents

1 Introduction 7
1.1 State Based Systems . 7

1.1.1 Informal De�nition . 7
1.1.2 Stream Automata . 8
1.1.3 Mealy Machines . 9
1.1.4 Automata with Error Conditions 10
1.1.5 Kripke Models . 11
1.1.6 Coalgebras . 12

1.2 Homomorphisms of Systems 13
1.2.1 Morphisms of Stream Automata 13
1.2.2 Morphisms of Mealy Machines 15
1.2.3 Morphisms of Coalgebras: The Common Pattern . . . 16
1.2.4 Morphisms of Kripke Models 19

1.3 Behavioural Equivalence . 21
1.3.1 From Stream Automata to a General De�nition 21
1.3.2 Behavioural Equivalence on Mealy Machines 23
1.3.3 Behavioural Equivalence on Kripke Models 25

1.4 Notes . 28
1.5 Exercises . 28

2 Universal Constructions 31
2.1 Basic Concepts of Category Theory 31
2.2 Some Categorical Constructions 33

3

2.2.1 Coproducts . 33
2.2.2 Coequalisers . 36
2.2.3 Pushouts . 38

2.3 More on Behavioural Equivalence 40
2.4 Images and Factorisations . 41
2.5 Quotients modulo Behavioural Equivalence 43
2.6 Simple and Extensive Systems 45
2.7 Final Coalgebras . 46
2.8 Simple Properties of Final Systems 48
2.9 Notes . 49
2.10 Exercises . 49

3 De�nitions and Proofs by Coinduction 51
3.1 Final Coalgebras . 51

3.1.1 Accessible Functors . 51
3.1.2 Limits along Sequences 52
3.1.3 The Terminal Sequence 54

3.2 On Categorical Duality . 58
3.3 Coinductive De�nitions . 60

3.3.1 Iteration and Coiteration 61
3.3.2 Primitive (Co)Recursion 63

3.4 Proofs by Terminal Sequence Induction 67
3.5 Bisimulation Proofs . 69
3.6 Notes . 70
3.7 Exercise . 71

4 Modal Logics for Coalgebras 73
4.1 Coalgebraic Logic . 73
4.2 Coalgebraic Modal Logic . 76
4.3 Expressivity of Coalgebraic Modal Logic 81
4.4 Notes . 86
4.5 exercises . 87

4

5 Proof Systems For Coalgebraic Logics 89
5.1 Properties of the Consequence Relation 89
5.2 Proof Systems for Coalgebraic Modal Logic 93
5.3 Finite Models and Decidability 98
5.4 Conclusions and Related Work 99
5.5 Exercises . 100

Preface

In these notes, we give an introduction to the theory of coalgebras.
Our claim is, that coalgebras, for an endofunctor on the category of sets and
functions, provide a general framework, which allows to model a vast range
of state based systems. In the �rst chapter, we substantiate this claim by
discussing several examples, from which we derive the general de�nitions.
The second chapter presents various structure theoretic results and lays the
foundations for the applications in the subsequent chapters.
We then discuss two applications of the general theory of coalgebras in detail:
de�nitions and proofs by coinduction, and modal logics for coalgebras.
The choice of topics is of course subjective and biased towards the authors
own interests. There are many other topics, which could not be included
in these notes. Among the omitted material are: The study of expressivity
for coalgebraic logics on a model class level, which provides co-Birkho� type
theorems [5, 23, 31]. Also, we have not discussed applications to coalgebraic
speci�cation [17, 14, 50, 40]. Coalgebras have also been used as models
for object oriented programs [47, 26]. The structure theory for coalgebras
we have developed is relative to the base category of sets and functions; a
categorical account of structure present in categories of coalgebras can be
found in [46, 61, 30]. Another branch which we have regretfully not included
is the use of coalgebras in semantics of programming [57, 56]. mention the
use of

5

6

Chapter 1

Introduction

1.1 State Based Systems

This section introduces the concept of coalgebras, which we understand as
state based systems, by means of several examples. The main purpose is
to convince the reader that the notion of coalgebra captures a large class
of systems, and to provide enough illustrative material, on which the reader
can use the concepts and ideas presented in later chapters. Before going into
concrete examples, we clarify, in informal terms, what what we mean when
talking about �state based systems�.

1.1.1 Informal De�nition

One of the claims of the theory of coalgebras is, that many di�erent types
of state based systems arise naturally as coalgebras. In general, state based
systems meet the following criteria:

(i) The behaviour of the system depends on an internal state, which is
invisible for the user of the system.

(ii) The system is reactive, i.e. not necessarily terminating, and interacts
with its environment.

(iii) The system comes with a set of operations, through which this inter-
action takes place.

This is, of course, not a formal de�nition. We will argue in these notes, that
the notion of coalgebra for a functor is an adequate formalisation of state
based systems. Before going into the theory of coalgebras, we give some
concrete examples of state based systems.

7

1.1.2 Stream Automata

Stream automata are a particularly simple class of systems, which have a
display, and a button. In the display we can see a data element d (which
belongs to some �xed set D of data). Whenever we push the button, the
system updates its display, and we can see a (not necessarily new) data
element d′ ∈ D. Hence a stream automaton with a set S of internal states
can be described by a pair of functions, which determine the observable data
element and the successor state, respectively. Formally, we have
De�nition 1.1.1. A stream automaton over a set D (of data) is a triple
(S, hd, tl) where S is a set (the state space), and hd : S → D, tl : S → S are
functions.

The name �stream automaton� refers to the fact that, given some internal
state s ∈ S, we can observe an in�nite stream of data elements (hd(s), hd ◦
tl(s), hd◦tl◦tl(s), . . .). Here hd stands for �head�, producing the �rst element
of the stream and tl is short for �tail�. We can combine these two functions
into one by using cartesian products:
Notation 1.1.2. If A,B are sets, we denote their cartesian product {(a, b) |
a ∈ A, b ∈ B by A × B. If C is another set and f : C → A, g : C → B
are functions, we de�ne 〈f, g〉 : C → A × B by 〈f, g〉(c) = (f(a), g(a)).
Projections are denoted by π1 : A×B → A (resp. π2 : A×B → B), where
π1(a, b) = a (resp. π2(a, b) = b). If f : A → B and g : C → D, we put
f × g = 〈f ◦ π1, g ◦ π2〉 : A× C → B ×D (i.e. (f × g)(a, c) = (f(a), g(c))).

We will often make use of the following easy, but useful lemma, the proof of
which is relegated to the exercises.
Lemma 1.1.3 (Universal Property of the Cartesian Product). Sup-
pose f : C → A, g : C → B are functions. Then 〈f, g〉 is the unique function
satisfying 〈f, g〉 ◦ π1 = f and 〈f, g〉 ◦ π2 = g.

Using cartesian products, we can now express the dynamics of a stream
automaton as a single function

〈hd, tl〉 : S → D × S.

In this example, the �rst prototypical feature of coalgebras is already present:
We observe hidden states s ∈ S by means of a function with domain S; on
a formal level, this can be seen as dual to the case of algebras, where one
constructs elements (of some set A) by means of functions with codomain A.

8

1.1.3 Mealy Machines

Our next example of a system, Mealy machines, can be seen as stream au-
tomata, which also accepts user input. Recall that a Mealy machine with
input alphabet I and output alphabet O is just a deterministic �nite automa-
ton, which produces a letter of the output alphabet O in every transition
step. Given an input alphabet I and an output alphabet O, the formalisation
of Mealy machines is the following:
De�nition 1.1.4. A Mealy machine is a triple (S, next, out), where S is the
state set of the automaton, next : I × S → S is the transition function and
out : I × S → O is the output function.

In general (see e.g. [25, 55]), a Mealy machine also has an initial state; since
the initial state is not important for our purposes, it is omitted in the above
de�nition.
In the case of stream automata, we have remarked that it is a typical feature
of state based systems, that one can observe the state space by means of
a function with the state space as domain. In the case of Mealy machines
however, we deal with two functions whose codomain is the cartesian product
S × I of state space and input alphabet. This di�erence only exists at the
surface, and we can convert the functions next and out to a single function
with domain S, using a technique known as currying. Given a binary function
f : A × B → C and a ∈ A, the assignment f(a,−) : b 7→ f(a, b) de�nes a
function B → C. This allows us to view f as a unary function, taking values
in the set of all functions from B → C. We denote the function space as
follows:
Notation 1.1.5. If A,B are sets, then BA denotes the set of all functions
from A to B. When de�ning a particular element f ∈ BA, we often use
λ-notation, that is, if t(a) is an expression denoting an element of B with a
free parameter a, which stands for an element of a, we write λa.t(a) for the
function a 7→ t(a); for example λx.x + 1 denotes the successor function. If
f : A×B → C is a function, we write curry(f) for the function a 7→ λb.f(a, b).
Note that curry(f) : A→ CB.

Using cartesian products, we can express the transition function of a Mealy
automaton as a function

〈out, next〉 : S × I → O × S

and, using currying as explained above, as a unary function
curry(〈out, next〉) : S → (O × S)I

9

After these rearrangements, we can view Mealy automata as pairs (S, f),
where S is a set of states and f is a function with domain S, in accordance
with our above remark that one can observe states via a function with domain
S.

1.1.4 Automata with Error Conditions

We now extend the previous example to incorporate the failure to perform
a certain transition. In this context, it is helpful to think of a determinis-
tic automaton not in the context of formal languages, but to consider the
automaton as a vending machines, where we the input is e.g. coins and the
machine serves drinks, say. In a setting which does not incorporate failures,
we can use the same model as for the Mealy machine: If the machine is
some internal state s, an input gives us both a new state s′ and an output,
depending on the current state (i.e. s) and the input.
We now add the possibility of failures to the picture. Suppose we want
the machine to signal that it is (due to some internal error, or because it
ran out of merchandise) no longer able to serve our requests. Let's fur-
thermore assume that the machine realises, that it ran out of merchandise
after the last item was sold (that is, we do not consider erroneous vend-
ing attempts). In addition to our set I of input tokens, the set O of
outputs, and a set S of internal states, we also �x a set E of errors (e.g.
E = {out of change, our of merchandise}). Since we want to design the ma-
chine such that it does not allow for failed vending attempts, the output
function

out : S × I → O

is the same as for Mealy machines. The di�erence comes with the function
which determines the next state. If the automaton decides to stop working,
we have to produce an error condition e ∈ E; otherwise a successor state;
note that as soon as we produce a successor state, we can apply out to
initiate a new vending action. Assuming that S and E are disjoint sets, we
can therefore put

next : S × I → S ∪ E.

The assumption of disjointness of two sets is tedious, most of all because
it requires a lot of bookkeeping. Using coproducts, we can incorporate the
assumption of disjointness into the codomain of next.
Notation 1.1.6. Suppose A,B are sets. We denote their coproduct (some-
times also called disjoint union) {(a, 0) | a ∈ A} ∪ {(b, 1) | b ∈ B} by A+B.
If C is another set and f : A → C and g : B → C are functions, we de�ne
[f, g] : A + B → C by (f + g)(x, i) = f(x) if i = 0 and (f + g)(x, i) = g(x)
if i = 1. The canonical injections are denoted by inl : A → A + B (resp.

10

inr : B → A+B) where inl(a) = (a, 0) (resp. inr(b) = (b, 1)). If f : A→ B
and g : C → D, we put f + g = [inl ◦ f, inr ◦ g] : A + C → B +D, that is
(f + g)(a, 0) = (f(a), 0) and (f + g)(c, 1) = (g(c), 1).

As with cartesian products, the following universal property often simpli�es
proofs:
Lemma 1.1.7 (Universal Property of Coproducts). Suppose f : A→
C and g : B → C are functions. Then [f, g] is the unique function satisfying

[f, g] ◦ inl = f and [f, g] ◦ inr = g.

Exercise 1.5.2 asks you to prove this lemma.
Using coproducts, we drop the assumption of disjointness and model the
next state function of the automaton with error conditions as

out : S × I → O + E.

Combining out and next into a single function, we obtain a binary function
〈out, next〉 : S × I → O × (S + E) (1.1)

which we can view, via currying, as a unary function
curry(〈out, next〉) : S → (O × (S + E))I . (1.2)

Thus also automaton with error conditions can be modelled as a unary func-
tion with the state space as codomain.

1.1.5 Kripke Models

In both of the above examples, the automata were deterministic, in the sense
that the successor state is determined by a function. In the case of Kripke
Models, the successor state is not determined by a transition function, but by
a transition relation. This way, every state can have 0, 1 or more successors.
De�nition 1.1.8. A Kripke model over a set A (of atomic propositions) is
a triple (S,R, V) where S is a set (of states, or worlds), R ⊆ S × S is the
accessibility relation and V : A→ P(W) is a valuation.

Given a Kripke model (S,R, V) over a set A of propositions, one generally
thinks of S as a set of worlds, and the relation R determines the evolution
of one world into another. The valuation determines, for each proposition
a ∈ A, the set of worlds, where this proposition is satis�ed. If, for example a
corresponds to �it's raining�, then V (a) is the set of all worlds where it rains.

11

For the purpose of these notes, it's probably best to think of a Kripke model philosophical under-
pinning, importance
in model-checking

as a non-deterministic system, which changes state non-deterministically.
The valuation allows us to make assertions about the current state.
Also the structure of Kripke models can be expressed using a function out
of the state space: We have to represent the transition relation R ⊆ S × S
and the valuation A → P(S) as functions with domain S. Since there is a
one-to-one correspondence

{relations R ⊆ A×B} ↔ {functions f : A→ P(B)},

given by
R 7→ (a 7→ {b ∈ B | (a, b) ∈ R}

we can equivalently view the transition structure of a Kripke model as a
function next : S → P(S). A similar trick can also be applied to the valuation
function: Instead of associating a set of worlds to each proposition, we can
equivalently map a world to the set of propositions it satis�es, obtaining a
function propn : S → P(S), mapping s 7→ {a ∈ A | s ∈ V (a)}. Combining
both functions, we obtain a representation of Kripke models as pair (S, f)
where S is the state space and the dynamics is given by

〈next, prop〉 : S → P(S)× P(A)

with the state space as codomain.

1.1.6 Coalgebras

We have seen in the examples, that di�erent types of state based systems can
be modelled by a set (of states) and a function, whose domain is the state
space. As the above examples show, the codomain of this function determines
the type of system. Being interested in a general theory of systems, we
consider the type as a parameter of our de�nition. This is done by considering
the type as an operation on sets, assigning a set TX to every set X.
De�nition 1.1.9. Suppose T is an operation on sets. A T -coalgebras is a
pair (C, γ) where C is a set (of states) and γ : C → TC is a (transition)
function.
We have already seen three examples:

• stream automata are T -coalgebras for TX = D ×X

• Mealy machines are T -coalgebras for TX = (O ×X)I

• Kripke Models are T -coalgebras for TX = P(X)× P(A)

• Automata with Errors are T -coalgebras for TX = (O × (S + E)I .
Three more types of systems are treated in the exercises.

12

1.2 Homomorphisms of Systems

The easiest way to describe the relation between di�erent systems (coalge-
bras) is via homomorphisms. Just as in universal algebra, a homomorphism is
a structure preserving map. This section takes up some of the examples dis-
cussed previously and motivates the de�nition of coalgebra-homomorphism.

1.2.1 Morphisms of Stream Automata

Let's start with the simples example, and consider homomorphisms between
stream automata over a set D of data. With the idea at the back of our
mind that a homomorphism is a structure preserving function, the obvious
de�nition of homomorphism is the following:
De�nition 1.2.1. Suppose (S, hd, tl) and (S, hd′, tl′ are stream automata.
A function f : S → S′ is a homomorphism of stream automata, if

• hd(s) = hd′(f(s))

• f ◦ tl(s) = tl′(f(s))

for all s ∈ S.

In view of our general de�nition of coalgebras as given by a unary function
with the state space as domain, we can rephrase this de�nition as follows:
Fact 1.2.2. A function f : S → S′ is a homomorphism between the stream

automata (S, hd, tl) and (S′, hd′, tl′) i� D × f ◦ 〈hd, tl〉 = 〈hd′, tl′〉 ◦ f .

Here, as in the sequel, we use the same symbol for a set and the identity
function on that set:
Notation 1.2.3. If A is a set, then we also use A to denote the identity
function on A. In particular, if f is a function, A× f stands for idA × f .

The homomorphism condition on f is often expressed diagrammatically by
requiring the diagram

S
f //

σ

��

S′

σ′

��
D × S

D×f
// D × S′,

where σ = 〈hd, tl〉 and σ′ = 〈hd′, tl′〉 to commute (i.e. all paths from any
node to another yield the same function).

13

The proof of the above fact is straightforward, and therefore omitted, al-
though the reader is encouraged to give a proof, which only uses the universal
property of cartesian products (Lemma 1.1.3).
The fact that homomorphisms are compatible with the transition structure
of stream automata entails, that homomorphisms preserve observable be-
haviour. In the case of a stream automaton (S, hd, tl), the only thing we can
observe from a state s ∈ S is the induced sequence (hd(s), hd ◦ tl(s), hd ◦
tl ◦ tl(s), . . .) of data elements. In this sense, a homomorphism preserves
observable behaviour:
Lemma 1.2.4. Suppose (S, hd, tl) and (S′, hd′, tl′) are stream automata and

f : S → S′ is a morphism of stream automata. Then

hd ◦ tln(s) = hd′ ◦ tl′
n(f(s))

for all s ∈ S.

In the formulation of the lemma, we have used the following terminology to
express the iteration of endofunctions:
Notation 1.2.5. Suppose f : A → A is an endofunction. For n ∈ N, the
function fn is de�ned inductively by f0 = idA and fn = f ◦fn−1f for n > 0.
This allows us to use induction in the proof of Lemma 1.2.4:
Proof of Lemma 1.2.4. We use induction on n to show that

f ◦ tln = tl′
n ◦ f (1.3)

if f : S → S′ is a morphism of stream automata (S, hd, tl) → (S′, hd′, tl′).
For n = 0, there is nothing to show. Now suppose 0 < n and pick some
s ∈ S. We have

f ◦ tln(s) = f ◦ tl ◦ tln−1(s) Def'n 1.2.5
= tl′ ◦ f ◦ tln−1(s) Def'n 1.2.1
= tl′ ◦ tl′

n−1 ◦ f(s) Def'n 1.2.5
= tl′

n ◦ f(s).

Identity 1.3 now entails that
hd′ ◦ tl′

n
f(s) = hd′ ◦ f ◦ tln(s) Equation 1.3

= hd ◦ tln(s) Def'n 1.2.1
which proves the claim.
Note that this is not a characterisation of morphisms of stream automata;
in Exercise 1.5.6 you are asked to �nd an example of a behaviour preserving
function, which is not a homomorphism.

14

1.2.2 Morphisms of Mealy Machines

Let's now consider homomorphisms of Mealy machines. The requirement
that homomorphisms be compatible with the transition structure of Mealy
machines leads us to the following:
De�nition 1.2.6. Suppose (S, next, out) and (S, next′, out′) are Mealy ma-
chines. A function f : S → S′ is a homomorphism of Mealy machines,
if

(i) out(s, i) = out′(f(s), i)

(ii) f ◦ next(s, i) = next′(f(s), i)

for all s ∈ S and i ∈ I.

Let's brie�y contemplate on this de�nition. The �rst requirement says that
� given the same input � the states s and f(s) produce the same output.
The second equation says that f is compatible with next (again, given the
same inputs). This becomes more apparent when considering the functions
nexti : S → S, s 7→ next(i, s) (and next′i : s′ 7→ next′(i, s)) for some �xed
i ∈ I. Note that nexti = curry(next)(i) (and of course next′ = curry(next′)(i)).
Using this notation, the second requirement we put on a homomorphism of
Mealy machines reads f ◦nexti = next′i ◦f (for all i ∈ I), which is, except for
the universally quanti�es variable i, the requirement we have encountered in
the de�nition of homomorphisms for stream automata, cf. De�nition 1.2.1.
We now claim that the de�nition of homomorphisms of Mealy machines also
formally follows the same pattern as the de�nition of homomorphisms for
stream automata. To make this precise, we use
Notation 1.2.7. If f : A→ B is a function and C is a set, fC : AC → BC

is the function given by h 7→ f ◦ h.
Lemma 1.2.8. Suppose (S, next, out) and (S, next′, out′) are Mealy machines.

A function f : S → S′ is a homomorphism of Mealy machines, if the diagram

S

σ
��

f // S′

σ′

��
(O × S)I

(O×f)I
// (O × S′)I ,

where σ = curry(〈out, next〉) and σ′ = curry〈out′, next′〉, commutes.

15

Proof. Note that, unravelling Notation 1.2.7, we have
(O × f)I ◦ σ(s) = (O × f)I(σ(s)) = (O × f) ◦ σ(s). (1.4)

Using this identity, we obtain the following chain of equivalences:
f is a morphism of Mealy machines

i� (out(s, i), f ◦ next(s, i)) = (out′(f(s), i), next′(f(s), i)) Def'n 1.2.6
i� (idO × f) ◦ 〈out, next〉(s, i) = 〈out′, next′〉(f(s), i) Not'n 1.1.2
i� (idO × f)(σ(s)(i)) = (σ′ ◦ f)(s)(i) Def'n of σ
i� ((O × f) ◦ σ(s))(i) = (σ′ ◦ f)(s)(i) Def'n of ◦
i� ((O × f)I ◦ σ)(s)(i) = (σ′ ◦ f)(s)(i) Equation 1.4
i� the diagram in Lemma 1.2.8 commutes

1.2.3 Morphisms of Coalgebras: The Common Pattern

Let's try to �nd the formal similarities between morphisms of stream au-
tomata and morphisms of Mealy machines. We have seen that both steam
automata and Mealy machines arise as coalgebras, the former as coalgebras
for the operation TX = D×X, the latter as coalgebras for TX = (O×X)I .
Note that Notation 1.2.3 and 1.2.7 (purposely) extend both the operations
to functions, that is, if f : A → B is a function, then Tf : TA → TB, for
both TX = D ×X and TX = (O ×X)I .
Now, if (S, σ) and (S′, σ′) are coalgebraic representations of either stream
automata (cf. Section 1.1.2) or Mealy machines (given in Section 1.1.3), we
have seen that a function f : S → S′ is a homomorphism of the respective
structures, i�

Tf ◦ σ = σ′ ◦ f.

This is the key observation, which gives rise to a general de�nition of mor-
phisms for coalgebras, but it requires the extension of T to functions.
Let's see what we need to require from this extension to functions, in order
to obtain a reasonable notion of morphisms. If we think of morphisms as
structure preserving functions, we have the following two minimal require-
ments:

(i) The identity function is a morphism
(ii) The composition of two morphisms is a morphism.

16

(Note that also morphisms of algebraic structures meet both these require-
ments, see e.g. [60].)
Now suppose that T is an operation on sets, which extends to functions, i.e.
if f : A → B is a function, then so is Tf : TA → TB. We discuss the
requirements which T has to meet in order to guarantee both assumptions
above.
For the identity map, let (S, σ) be a T -coalgebra. The identity function idS

is a morphism if the square

S

σ

��

idS // S

σ

��
TS

T idS

// TS

commutes. This is guaranteed if we require T to preserve identity morphisms,
that is

T idS = idTS

for all sets S.
For compositionality, assume that (S, σ), (S′, σ′) and (S′′, σ′′) are T -coalgebras
and f : S → S′, g : S′ → S′′ are morphisms. Consider the following diagram:

S

g◦f

''

σ

��

f // S′

σ

��

g // S′′

σ′′

��
TS

T (g◦f)

66Tf
// TS′

Tg
// TS′′

The inner two squares of the diagram commute, since we have assumed both
f and g to be homomorphisms. We have that g ◦ f is a homomorphism,
i� the the rectangle constituted by the curved arrows commutes. This is
certainly the case if T preserves function composition, that is,

T (g ◦ f) = Tg ◦ Tf

whenever f, g are composable functions.
Both conditions, preservation of identities and preservation of compositions,
put together, say that we have to require that T is a functor:
De�nition 1.2.9. A functor on sets is an operation T such that

(i) TA is a set, whenever A is a set
17

(ii) Tf is a function, whenever f is a function

subject to the following conditions:

(i) Tf : TA→ TB, for all functions f : A→ B

(ii) T idA = idTA for all sets A

(iii) T (g◦f) = Tg◦Tf whenever f : A→ B and g : B → C are composable
functions.

We write T : Set → Set to indicate that T is a functor on sets.

We now require for the rest of these notes that the operation T , which
describes the type of system under consideration, is a functor on sets. The
reader is invited to check that the operations we have considered in our
discussion of coalgebra-morphism, that is, TX = D×X and TX = (O×X)I

are indeed functors (Exercise 1.5.7). Using that T can also be applied to
functions, we obtain the following de�nition of coalgebra homomorphism:
De�nition 1.2.10. Suppose T : Set → Set is a functor and (S, σ), (S′, σ′)
are T -coalgebras. A function f : S → S′ is a homomorphism from (S, σ) to
(S, σ′) (denoted by f : (S, σ) → (S, σ′), if Tf ◦ σ = σ′ ◦ f .

Since the word �homomorphism� is quite long, we will often simply speak of
morphisms of coalgebras. Our above discussion about the required properties
of T then proves the following:
Proposition 1.2.11. Suppose T : Set → Set.

(i) If (S, σ) is a T -coalgebra, then idS : (S, σ) → (S, σ) is a coalgebra

morphism.

(ii) If also (S′, σ′) and (S′′, σ′′) are T -coalgebras and f : (S, σ) → (S′, σ′)
and g : (S′, σ′) → (S′′, σ′′) are morphisms, then so is g ◦ f : (S, σ) →
(S′′, σ′′).

Proof. Immediate by the fact that T is a functor, see the discussion at the
beginning of this section.

18

1.2.4 Morphisms of Kripke Models

In the previous section, we have examined morphisms of stream automata
and Mealy machines in order to distill the general pattern for the de�nition of
coalgebra-homomorphism. We now go the other way round and instantiate
De�nition 1.2.10 with the case of Kripke models (Section 1.1.5).
Recall that Kripke models (S,R, V) over a set P of propositions are in 1-1
correspondence to coalgebras for TX = P(X) × P(P). In order to use the
de�nition of coalgebra morphism, we �rst have to extend T to a functor,
that is, we need to de�ne the action of T on functions. We begin with
the action of P on functions. If f : A → B, what's a good de�nition of
P(f) : P(A) → P(B)? The �rst (and only) thing, which comes to mind is
direct image:
Notation 1.2.12. If f : A→ B is a function and a ⊆ A, we denote by

f [a] = {f(a) | a ∈ A}

the direct image of a under f .
We can now put

P(f)(a) = f [a]

to obtain the desired de�nition of P on functions (would inverse image also
be a possibility?). Using the abbreviation introduced in Notation 1.2.3, the
action of T on functions is now given by

P(f)× P(P) = P(f)× idP(P) : P(A)× P(P) → P(B)× P(P)

(recall that the set P is �xed once and for all).
Now suppose that (S,R, V), (S′, R′, V ′) are Kripke models, and (S, σ), (S′, σ′)
are their coalgebraic representations (see Section 1.1.5, i.e. σ(s) = ({s′ ∈ S |
(s, s′) ∈ R}, {p ∈ P | s ∈ V (p)}), analogously for (S′, R′, V ′)).
Instantiating De�nition 1.2.10, we require for f : S → S′ to be a morphism
that

S

σ
��

f // S′

σ′

��
P(S)× P(P)

P(f)×P(P)
// P(S′) → P(P)

commutes. In terms of the relational presentation of Kripke models, this
boils down to the following:
Lemma 1.2.13. Suppose (S,R, V), (S′, R′, V ′) are Kripke models with asso-

ciated coalgebraic representations (S, σ) and (S′, σ′). A function f : S → S′

is a coalgebra morphism f : (S, σ) → (S′, σ′) if and only if

19

(i) s ∈ V (p) i� f(s) ∈ V (p) for all s ∈ S and p ∈ P

(ii) (s0, s1) ∈ R =⇒ (f(s0), f(s1)) ∈ R′ for all s0, s1 ∈ S

(iii) (f(s0), s′1) ∈ R′ =⇒ ∃s1 ∈ S1.f(s1) = s′1&(s0, s1) ∈ R for all s0 ∈ S,
s′1 ∈ S′

Proof. We denote the �rst and second component of σ by σ1 and σ′, respec-
tively and use the analogous notation for σ′. First note that f is a coalgebra
morphism, i�

(i') σ2(s) = σ′2(f(s))

(ii') P(f) ◦ σ1 ⊆ f ◦ σ′1.
(iii') P(f) ◦ σ1 ⊇ f ◦ σ′1.

We show that (x) ⇐⇒ (x′) for x ∈ {i , ii , iii}.
First note that
(i) ⇐⇒ ∀s ∈ S∀p ∈ P.p ∈ σ1(s) i� p ∈ σ2(f(s))

⇐⇒ ∀s ∈ S∀p ∈ P.s ∈ V (p) i� f(s) ∈ V ′(p)
⇐⇒ (i')

The second equivalence is due to
(ii) ⇐⇒ ∀s0 ∈ S.{f(s1) | (s0, s1) ∈ R} ⊆ {s′1 ∈ S′ | (f(s0), s′1) ∈ R′}

⇐⇒ (ii').
Finally,
(iii) ⇐⇒ ∀s0 ∈ S.{s′1 ∈ S′ | (f(s0), s′1) ∈ R′} ⊆ {f(s1) | (s0, s1) ∈ R}

⇐⇒ (iii'),
which �nishes the proof.

This Lemma shows, that in the case of Kripke models, we obtain (yet an-
other) familiar notion of morphism: coalgebra morphisms are precisely the
p morphisms (in the terminology of [13, 19, 20]), or bounded morphisms
(following [10]).
The case of morphisms between automata with error conditions, which in-
volves the extension of TX = (O× (X +E))I to functions, is treated in the
exercises.

20

1.3 Behavioural Equivalence

When we have �rst introduced systems informally, we have emphasised that
the internal state of the system is invisible for the user (this is the so-called
�black box view� of a system). That is, we identify any two states, which
cannot be distinguished from the outside. The study of this indistinguisha-
bility relation (called �behavioural equivalence�) is one of the main concerns
of a theory of systems, for the following two reasons:

(i) If two states cannot be distinguished from the outside, we can substi-
tute them for one another without a�ecting the behaviour of the sys-
tem (i.e. the environment cannot distinguish between behaviourally
equivalent states anyway).

(ii) When making assertions about the system, we want to be sure that
we only talk about its visible behaviour, and not constrain its internal
realisation.

This section introduces the general de�nition of behavioural equivalence and
discusses some examples.

1.3.1 From Stream Automata to a General De�nition

Just to give an idea what behavioural equivalence means, consider the fol-
lowing stream automaton, where the states are represented as circles, and
state transitions as arrows:

GFED@ABCB
vvnnnnnn

?>=<89:;A **GFED@ABCBjj

?>=<89:;A
hhPPPPPP

In this diagram, one would consider all states labelled with A behaviourally
equivalent, whereas we can distinguish both states which have a B-label.
This shows di�erent states, which are behaviourally equivalent. In the con-
crete case of stream automata, we have already used an intuitive de�nition
of behavioural equivalence: If (S, hd, tl) is a stream automaton, we have
considered the behaviour associated with a state s as the in�nite sequence
(hd(s), hd ◦ tl(s), hd ◦ tl2(s), . . .), and we can call two states behaviourally
equivalent, if they have the same behaviour (in the above sense). They key
observation now is, that the set of behaviours constitutes a stream automa-
ton (Z, ζ1, ζ2) itself, where

Z = {(d0, d1, d2, . . .) | di ∈ D for all d ≥ 0}

21

is the set of all in�nite sequences over D, and
ζ1(d0, d1, d2, . . .) = d0 ζ2(d0, d1, d2, . . .) = (d1, d2, d3, . . .).

That is, ζ1 gives us the �rst element of the sequence (the head) and ζ2 deletes
the �rst element.
Furthermore, mapping a state to its behaviour is a homomorphism of sys-
tems:
Lemma 1.3.1. Suppose (S, hd, tl) is a stream automaton and beh : S → Z
is de�ned by

beh(s) = (hd(s), hd ◦ tl(s), hd ◦ tl2(s), . . .).

Then beh is a morphism of stream automata.

Proof. We have ζ1(beh(s)) = ζ1(hd(s), hd ◦ tl(s), hd ◦ tl2(s), . . .) = hd(s) and
ζ2(beh(s)) = ζ2(hd(s), hd ◦ tl(s), hd ◦ tl2(s), . . .) = (hd ◦ tl(s), hd ◦ tl2(s), hd ◦
tl3(s), . . .) = beh ◦ tl(s).

Actually, beh above is the only homomorphism beh : (S, hd, tl) → (Z, ζ1, ζ2),
but we don't make use of uniqueness at this point; Exercise 1.5.10 asks you
to show it's uniqueness.
Now two states s and s′ are behaviourally equivalent, if they have the same
behaviour, that is, if beh(s) = beh(s′), that is, if they are identi�ed by (the
coalgebra morphism) beh. On the other hand, there's no need to require that
the states be identi�ed by this particular morphism, since every morphism
preserves behaviour (Lemma 1.2.4). In other words: it doesn't hurt to require
that s and s′ can be identi�ed by arbitrary coalgebra morphisms. We thus
arrive at the following de�nition:
De�nition 1.3.2. Suppose (S, σ), (S′, σ′) ∈ CoAlg(T). A pair of states
(s, s′) ∈ S × S′ is behaviourally equivalent (denoted by s ≈ s′), if there is
(S′′, σ′′) ∈ CoAlg(T) and a pair of morphisms f : (S, σ) → (S′′, σ′′) and
g : (S′, σ′) → (S′′, σ′′) such that f(s) = g(s′).

We brie�y note the following easy consequences:
Proposition 1.3.3. Suppose (S, σ), (S′, σ′) ∈ CoAlg(T) and (s, s′) ∈ S×S′.

(i) s ≈ s.

(ii) s ≈ s′ =⇒ s′ ≈ s.

Proof. Obvious.
22

We leave transitivity to the next chapter, which then shows that behavioural
equivalence is indeed an equivalence. For the moment, we contend ourselves
with seeing, what this de�nition means for several examples.
In the context of stream automata, we have the following characterisation of
behavioural equivalence:
Proposition 1.3.4. Suppose (S, hd, tl) and (S′, hd′, tl′) are stream automata

and (s, s′) ∈ S × S′. Then s ≈ s′ i� beh(s) = beh(s′).

Proof. If s ≈ s′ then Lemma 1.2.4 shows beh(s) = beh(s′); the converse is
the content of Lemma 1.3.1.
The remainder of the chapter instantiates the notion of behavioural equiva-
lence with more examples.

1.3.2 Behavioural Equivalence on Mealy Machines

We consider Mealy machines over the input and output alphabets I and O,
respectively. From the viewpoint of automata theory, the main feature of
a Mealy machine is, that it de�nes a (rather special) function from strings
over I to strings over O. Suppose (S, next, out) is a Mealy machine. Ever
state s ∈ S de�nes a function t(s) : I∗ → O∗ as follows:

t(s)(ε) = ε t(s)(i ·~i) = out(i, s) · t(next(i, s))(~i) for i ∈ I,~i ∈ I∗,
where we have used the following
Notation 1.3.5. If A is a set (or an alphabet), A∗ denotes the set of �nite
sequences of elements of A (or the set of words over A). We denote the
empty word by ε, and concatenation of ~a,~b ∈ A∗ by ~a ·~b; we often consider
A ⊆ A∗.
So what's the observable behaviour of a (state of a) Mealy machine? In this
section, we show that two states s, s′ of Mealy machines are behaviourally
equivalent, if and only if they de�ne the same function, i.e. if t(s) = t(s′),
which conforms with our intuitive idea of observable behaviour of Mealy
machines.
Recall that every Mealy machine arises as T -coalgebra for TX = (O ×X)I

(Section 1.1.3), and that we have shown in Lemma 1.2.8, that the coalge-
braic notion of morphism coincides with homomorphisms of Mealy machines.
Thus a pair (s, s′) is behaviourally equivalent, i� they can be identi�ed by a
morphism of Mealy machines.
We begin with showing, that behavioural equivalence of two states implies
equality of the induced function. By way of doing this, we also demonstrate

23

a handy trick for proving statements involving behavioural equivalence: In
order to show that a property is invariant under behavioural equivalence, we
just have to show that it is stable under homomorphisms.
Lemma 1.3.6. Suppose (S, out, next), (S′, out′, next′) are Mealy machines

and s ∈ S and s′ ∈ S′ are behaviourally equivalent. Then t(s) = t(s′).

Proof. As remarked above, it su�ces to consider a morphism f : S → S′

and show, that t(s) = t(f(s)). Having established that, we can argue as
follows: If s ≈ s′, then f(s) = g(s′) for some homomorphisms f and g, hence
t(s) = t(f(s)) = t(g(s′)) = t(s′).
We now show that t(s) = t(f(s)) for all s ∈ S, that is, t(s)(i) = t(f(s))(i)
by induction on i. For i = ε, we have t(s)(ε) = t(f(s))(ε) by de�nition of
t. Now suppose i = i0 · i1 with i0 ∈ I and i1I∗. Note that f(next(s, i0)) =
next′(f(s), i0), hence t(next′(f(s), i0)) = t(f(next(s, i0)) = t(next(s, i0)) by
induction hypothesis. Now t(s)(i0 · i1) = out(s, i0) · t(next(s, i0))(i1) =
out′(f(s), i0) · t(next′(f(s), i0)) = t(f(s))(i0 · i1), as claimed.
For the converse of the lemma, we use a technique similar to that used in the
proof of Proposition 1.3.4: We isolate a notion of behaviour, put a transition
structure on the set of all behaviours and show, that the function, which
maps a state to its behaviour is a homomorphism. So what is to be regarded
as the observable behaviour of a state of a Mealy machine? We have seen
above, that every state s de�nes a function t(s) : I∗ → O∗. These functions
can easily be seen to have the following two properties:

• They are length preserving that is, `(i) = `(t(s)(i)), for all i ∈ I∗,
where ` denotes the length of a �nite sequence of letters, and

• They are pre�x closed, that is, if i0 is a pre�x of i1 (and i0, i1 ∈ I∗),
then t(s)(i0) is a pre�x of t(s)(i1).

We denote the set of all functions, which have the above two properties, by
M, i.e.

M = {b : I∗ → O∗ | b length preserving and pre�x closed};
we think of M as the set of behaviours of Mealy machines.
Lemma 1.3.7. Suppose (S, out, next), (S′, out′, next′) are Mealy machines

and s ∈ S and s′ ∈ S′ satisfy t(s) = t(s′). Then s ≈ s′.

Proof. We put a transition structure on the set M of behaviours of Mealy
machines as follows:

outM (b, i) = b(i) nextM (b, i) = λj.tl(b(i · j))

24

This gives rise to a Mealy machine (M, outM , nextM); the (partial) function
tl deletes the �rst element from a �nite sequence.
We claim that t(b) = b, i.e. t(b)(i) = b(i) for all i ∈ I∗. This is proved by
induction on i. (We have to take a little care here: in order to apply the
induction hypothesis, we prove for all i ∈ I∗ and all b ∈ M that t(b)(i) =
b(i).) If i = ε, we have t(b)(i) = ε by de�nition of t and b(ε) = ε since b
is length-preserving. Now suppose i = i0 · i1 with i0 ∈ I and i1 ∈ I∗. We
obtain

t(b)(i0 · i1) = outM (b, i0) · t(nextM (b, i0))(i1) Def'n of t
= b(i0) · t(λj.tl(b(i0 · j))(i1) Def'n of outM , nextM

= b(i0) · λj.tl(b(i0 · j))(i1) Ind'n Hyp
= b(i0) · tl(b(i0 · i1)) b is pre�x closed
= b(i0 · i1)

We now show that, given any Mealy machine (S, out, next), the map t : s 7→
t(s) is a morphism of Mealy machines. This is a matter of noting that, for
i ∈ I and s ∈ S,

outM (t(s), i) = t(s)(i) Def'n of outM

= out(s, i) · t(next(s, i))(ε) Def'n of t(s); note i ∈ I
= out(s, i). Def'n of t

The second condition on homomorphisms of Mealy machines can be veri�ed
as follows (again i ∈ I and s ∈ S):

nextM (t(s), i) = λj.tl(t(s)(i · j)) Def'n of nextM

= λj.tl(out(s, i) · t(next(s, i)(j))) Def'n of t
= λj.t(next(s, i))(j) out(s, i) ∈ O
= t(next(s, i))

The statement of the lemma is now obvious, since we have shown t to be a
morphism of Mealy machines.

1.3.3 Behavioural Equivalence on Kripke Models

In this section, we continue our discussion on the coalgebraic presentation
of Kripke models, which we have begun in Section 1.1.5 and 1.2.4. The
main goal of this section is to show, that two states of Kripke models are
behaviourally equivalent (in the sense of De�nition 1.2.10) if and only if they
are bisimilar. In a nutshell, two states are bisimilar, if they can simulate (or

25

match) each other's transitions. Bisimilarity is important both in modal
logic [10] and in process calculi [41, 38]. The discovery of bisimilarity as an
essentially coalgebraic notion (due to Aczel [1]) is commonly regarded as the
starting point of the general theory of coalgebras. We discuss bisimilarity in
the context of Kripke models. A characterisation of bisimilarity on labelled
transition systems (cf Exercise 1.5.4) in terms of coalgebraic behavioural
equivalence can be obtained along similar lines. We begin with introducing
bisimilarity:
De�nition 1.3.8. Suppose (S,R, V) and (S′, R′, V ′) are Kripke models over
a set P of propositions. A bisimulation on (S,R, V) and (S′, R′, V ′) is a
relation B ⊆ S × S′ such that
(i) p ∈ V (s) ⇐⇒ p ∈ V (s′) for all (s, s′) ∈ R and all p ∈ P .
(ii) Whenever s0Rs1 and all (s0, s′0) ∈ B, then there is s′1 ∈ S′ such that

s′0Rs
′
1 and (s1, s′1) ∈ B.

(iii) Whenever s′0R′s′1 and all (s0, s′0) ∈ B, then there is s1 ∈ S such that
s0Rs1 and (s1, s′1) ∈ B.

We call two states s and s′ bisimilar, if there is a bisimulation B ⊆ S × S′

with (s, s′) ∈ B.
We note the following basic facts on bisimulations:
Lemma 1.3.9. Suppose (S,R, V), (S′, R′, V ′) and (S′′, R′′, V ′′) are Kripke

models.

(i) ∆S = {(s, s) | s ∈ S} is a bisimulation on (S,R, V) and itself.

(ii) If B ⊆ S×S′ is a bisimulation on (S,R, V) and (S′, R′, V ′), then Bop =
{(s′, s) | (s, s′) ∈ B} is a bisimulation on (S′, R′, V ′) and (S,R, V).

(iii) If B ⊆ S × S′ and B′ ⊆ S′ × S′′ are bisimulations, then B′ ◦ B ⊆
S×S′′ is a bisimulation on (S,R, V) and (S′′, R′′, V ′′) (here �◦� denotes
relational composition).

Proof. See Exercise 1.5.11.
The crucial fact needed in the proof of the fact that behaviourally equivalent
states of Kripke models are bisimilar is relies on the fact that the graph
of a coalgebra morphism is a bisimulation. The formulation of this insight
requires
Notation 1.3.10. Suppose f : A → B is a function. The graph of f ,
denoted by G(f) is given by G(f) = {(a, f(a)) | a ∈ A}.

26

We obtain:
Lemma 1.3.11. Suppose (S,R, V), (S′, R′, V ′) are Kripke models with as-

sociated coalgebraic representations (S, σ) and (S′, σ′) and f : S → S′ is a

coalgebra morphism. Then G(f) is a bisimulation.

Proof. Immediate from Lemma 1.2.13.

The last lemma is the key step in the proof of the �rst half of the comparison
between bisimulation and behavioural equivalence, which we not formulate.
Proposition 1.3.12. Suppose (S,R, V), (S′, R′, V ′) are Kripke models and

(s, s′) ∈ S × S′ are behaviourally equivalent (as states of the associated coal-

gebras). Then s, s′ are bisimilar.

Proof. If f and g are coalgebra morphisms identifying s and s′, then B =
G(g)op ◦G(f) is a bisimulation with (s, s′) ∈ B.

The crucial observation for the proof of the converse is, that bisimulations
carry a coalgebra structure.
Lemma 1.3.13. Suppose TX = P(X) × P(P) and (S, σ), (S, σ′) are T -
coalgebras and B ⊆ S × S′ is bisimulation on the associated Kripke models.

If β = 〈β1, β2〉 : B → TB is de�ned by

β1(s, s′) = {(t, t′) ∈ B.t ∈ σ1(s), t′ ∈ σ′1(s′)}

(where σi = πi ◦ σ1 and σ′i = πi ◦ σ for i = 1, 2) and

β2(s, s′) = σ2(s)

then (B, β) is a T -coalgebra and π1 : (B, β) → (S, σ) and π2 : (B, β) → (S, σ)
are coalgebra morphisms.

Proof. Clearly (B, β) ∈ CoAlg(T). We just show that π1 is a homomorphism;
one deals with π2 analogously (note that π2 ◦ σ(s) = π2 ◦ σ′(s′) whenever
(s, s′) ∈ B). We have to show that

• σ1(s) ⊆ P(π1) ◦ β1(s, s′)

• σ1(s) ⊇ P(π1) ◦ β1(s, s′)

• σ2(s) = β2(s, s′)

27

for all (s, s′) ∈ B.
For the �rst statement, suppose t ∈ σ1(s) and (s, s′) ∈ B. Since B is
a bisimulation, we �nd t′ ∈ S′ with t′ ∈ σ′1(s

′) and (t, t′) ∈ B. Hence
(t, t′) ∈ β1(s, s′), and t ∈ P(π1) ◦ β1(s, s′). The second statement is similar:
Suppose t ∈ P(π1) ◦ β1(s). Then there exists t′ ∈ S′ with (t, t′) ∈ β1(s).
By de�nition of β1, we have t ∈ σ1(s). The last statement is immediate by
de�nition of β2.

1.4 Notes

The aim of this chapter was to give an example oriented introduction to the
world of coalgebras; other introductions which cover the material presented
here include [22, 29, 35]. All of the material covered here and much more can
be found in Rutten [53]. The notion of behavioural equivalence we are using
in these notes is due to Kurz [32, 35]. Kripke models were introduced to
give a rigorous semantics for modal logic; they have found an application in
modern computer science as semantical base for model checking (automated
veri�cation) tools and techniques [16, 15]. The notion of p-morphism is due
to Segerberg [54]. Automata were studies from a coalgebraic perspective �rst
in [51].

1.5 Exercises

Exercise 1.5.1. Prove Lemma 1.1.3.
Exercise 1.5.2. Prove Lemma 1.1.7.
Exercise 1.5.3 (Moore machines). Find an operation T on sets such
that the T -coalgebras are precisely the Moore machines. A Moore machine
with input alphabet I and output alphabet O is tuple (S, next, out), where
next : S × I → S is the state transition function and out : S → O associates
an output to every state. (Note that, in contrast to Mealy machines, the
output only depends on the current state.)
Exercise 1.5.4. For which operation T on sets do we recover labelled transi-
tion systems as T -coalgebras? Given a set L (of labels), a labelled transition
system is a tuple (S,R), where R ⊆ S×L×S. In a labelled transition system,
a triple (s, l, s′) ∈ R corresponds to a labelled state transition s l→ s′.
Exercise 1.5.5. Stacks are datatypes which come with an operation push,
which pushes an element on top of the stack and pop, which returns the
topmost element of the stack, and fails, it the stack is empty. Find an
operation T on sets such that T -coalgebras are stacks. (Hint: Failure can be
modelled using a one element set of errors.)

28

Exercise 1.5.6. This exercise shows, that the converse of Lemma 1.2.4 is
in general false. Find two stream automata (S, hd, tl) and (S′, hd′, tl′) and
a behaviour preserving function f : S → S′ which is not a homomorphism
of stream automata. (A function f : S → S′ is behaviour preserving, if
hd ◦ tln(s) = hd′ ◦ tl′

n(f(s)) for all s ∈ S and n ∈ N.)
Exercise 1.5.7. Show that the extension of both TX = D×X and T ′X =
(O × X)I to functions, given by Notation 1.2.3 and Notation 1.2.7, yields
functors T and T ′.
Exercise 1.5.8. Suppose T and S are functors on set. De�ne an action on
functions for the operation UX = TX +SX such that U becomes a functor
on sets. Prove that the functor laws (De�nition 1.2.9) are ful�lled.
Exercise 1.5.9. Give a description of homomorphism of Automata with Er-
ror conditions (Section 1.1.4) using the functoriality of the operation TX =
(O × (S + E))I established in Exercise 1.5.8.
Exercise 1.5.10. Consider the stream automaton (Z, ζ1, ζ2) from Lemma
1.3.1 and show, that for every stream automaton (S, hd, tl) there is precisely
one homomorphism (S, hd, tl) → (Z, ζ1, ζ2).
Exercise 1.5.11. Prove Lemma 1.3.9.

29

30

Chapter 2

Universal Constructions

After having seen many examples of coalgebras, we are now concerned with
the general theory. This chapter deals with universal constructions on coal-
gebras, proves that behavioural equivalence is an equivalence relation and
establishes the existence of �nal coalgebras. In order to formulate (some of)
the constructions, it is convenient to use the language of categories, which
we introduce brie�y in the �rst section.

2.1 Basic Concepts of Category Theory

In the sequel, we are going to deal with universal constructions, which are
most easily formalised in the context of category theory. This section con-
tains the basic de�nitions.
The motivation for the notion of �category� is, that it formalises a class of
mathematical structures, along with structure preserving functions between
them. This is done as follows:
De�nition 2.1.1. A category C consists of

(i) A bunch of objects obj(C)

(ii) A bunch of arrows C(A,B) for any two A,B ∈ obj(C)

(iii) an arrow 1A ∈ C(A,A) for all A ∈ obj(C)

(iv) An operation ◦ABC : C(B,C) × C(A,B) → C(A,C) for any three
A,B,C ∈ obj(C)

(we write f : A → B if f ∈ C(A,B) and g ◦ f for ◦(g, f)), subject to the
following conditions:

31

(i) If f : A→ B, g : B → C and h : C → D, then h ◦ (g ◦ f) = (h ◦ g) ◦ f .
(ii) If f : A→ B and g : B → C, then 1B ◦ f = f and g ◦ 1B = g.

The arrows are often also called morphisms of the respective category. As
already said, the main examples are mathematical structures, endowed with
structure preserving maps:
Example 2.1.2. (i) The category Set of sets has sets as objects and

Set(A,B) is the set of functions from A to B.
(ii) The category Grp of groups has groups as objects and group homomor-

phisms as arrows.
(iii) The category CoAlg(T) has T -coalgebras as objects; the arrows f :

(C, γ) → (D, δ) are the morphisms of coalgebras.

In these notes, we'll only use the category Set of sets and the category
CoAlg(T) of T -coalgebras. However, many of the concepts we use here can
also be fruitfully applied in other categories. Just as there are homomor-
phisms between groups (or coalgebras, for that matter), there's also a notion
of homomorphism of categories. We have already met a special instance:
endofunctors on Set.
De�nition 2.1.3. Suppose C and D are categories. A functor F : C → D
consists of

(i) A mapping F : obj(C) → obj(D)

(ii) a mapping F (A,B) : C(A,B) → D(FA,FB)

subject to the following conditions (we write Ff for F (A,B)(f)):

(i) F1A = 1FA for all A ∈ obj(C)

(ii) F (g ◦ f) = (Fg) ◦ (Ff) for all f : A→ B and all g : B → C ∈ C.
Example 2.1.4. (i) Every functor on sets (cf. De�nition 1.2.9) is a func-

tor in the sense of the above de�nition.
(ii) The assignment U(C, γ) = C and Uf = f de�nes a functor U :

CoAlg(T) → Set; this functor is often called the �underlying� or �for-
getful� functor.

We will often use the functor U to relate properties of coalgebras with prop-
erties of their carrier sets.

32

2.2 Some Categorical Constructions

This section discusses some categorical constructions on coalgebras. In the
next section, we use the constructions presented here in order to prove that
behavioural equivalence is transitive.

2.2.1 Coproducts

We begin with looking at coproducts, which we have already met in the
�rst chapter, introduced as Notation 1.1.6. We now generalise the notion of
coproduct to categories as follows:
De�nition 2.2.1. Suppose C is a category and A,B ∈ C. A coproduct

diagram over A,Bin C is a triple (A+B, inl : A→ A+B, inr : B → A+B),
if the following holds:
For all C ∈ C and all f : A → C and all g : B → C, there exists a unique
[f, g] : A+B → C such that [f, g] ◦ inl = f and [f, g] ◦ inr = g. In this case,
A+B is also called the coproduct of A and B.
The latter property (�for all . . . there exists a unique . . . �) is the so-called
universal property of coproducts. It is often visualised diagrammatically as
follows:

A
inl //

∀f
$$J

JJJJJJJJJJJ A+B

∃![f,g]

��

B
inroo

∀g
zztttttttttttt

C

We have used the rather suggestive notation A + B for the coproduct and
[f, g] for the uniquely de�ned map. Often, coproducts (and also other con-
structions) can be explicitely de�ned in terms of their ingredients. Note that
in particular categories, coproduct diagrams may or may not exist.
If they do exist, they provide us with the following proof principle:
Lemma 2.2.2. Suppose (A + B, inl, inr) is a coproduct diagram and f, g :
A+ B → C are arrows of some category C. Then f = g i� f ◦ inl = g ◦ inl

and f ◦ inr = g ◦ inr.

Proof. Clearly f = g implies f ◦ inl = g ◦ inl and f ◦ inr = g ◦ inr. For the
converse, note that both f and g make the diagram

A
inl //

f◦inl=g◦inl
$$J

JJJJJJJJJJJ A+B

f,g

��

B
inroo

f◦inr=g◦inr
zztttttttttttt

C

33

commute, hence f = g by the universal property of coproducts.

The above lemma illustrates how to do proofs with universal properties.
We will often apply similar techniques without explicitely formulating the
underlying proof principle.
We have already seen that coproducts exist in the category of sets: Lemma
1.1.7 states that (A+B, inl, inr) is a coproduct diagram for all sets A,B (with
A + B, inr and inl given as in Notation 1.1.6). Hence, in Set, coproduct is
disjoint union. We now show, that coproducts of coalgebras exist, and that
they're also disjoint unions.
Lemma 2.2.3. Suppose (C, γ) and (D, δ) ∈ CoAlg(T) and let γ + δ = (γ +
δ) ◦ [T inl, T inr]. Then ((C + D, γ + δ), inl, inr) is a coproduct diagram in

CoAlg(T).

Proof. In order to qualify as a coproduct diagram, we �rst need to show that
((C +D, γ + δ), inl, inr) is a diagram, that is, inl and inr are morphisms of
coalgebras. That is, we have to show that

C
inl //

γ

��

C +D

γ+δ
��

TC
T inl

// T (C +D),

and the analogous diagram for the right injection, commute. This follows
from calculating
γ + δ ◦ inl = [T inl, T inr] ◦ [inl ◦ γ, inr ◦ δ] ◦ inl expanding γ + δ

= [T inl, T inr] ◦ inl ◦ γ Universal Property
= T inl ◦ γ Universal Property, again

Now suppose (E, ε) ∈ CoAlg(T) and f : (C, γ) → (E, ε), g : (D, δ) → (E, ε)
are morphisms of coalgebras. We have to show that

• There is a coalgebras morphism u : (C + D, γ + δ) → (E, ε), which
satis�es u ◦ inl = f and u ◦ inr = g, and

• u is unique wrt. this property.

We begin with uniqueness: Suppose u : (C + D, γ + δ) has the required
properties. Since coalgebra morphisms are in particular functions, we can
consider u : C + D as a (set theoretic) function satisfying u ◦ inl = f and
u ◦ inr = g. Thus, by the 2.2.2, u = [f, g] and u is the unique function with

34

the property u ◦ inl = f , u ◦ inr = g. We thus have to show that u = [f, g]
is actually a morphism of coalgebras, i.e.

C +D

γ+δ
��

[f,g] // E

ε

��
T (C +D)

T [f,g]
// TE

commutes. Using Lemma 2.2.2, it su�ces to show that

T [f, g] ◦ γ + δ ◦ inl = ε ◦ [f, g] ◦ inl

plus the corresponding analogous equation for the right injection inr. The
above equation follows from

T [f, g] ◦ γ + δ ◦ inl = T [f, g] ◦ [T inl, T inr] ◦ [inl ◦ γ, inr ◦ δ] ◦ inl Expanding γ + δ

= T [f, g] ◦ [T inl, T inr] ◦ inl ◦ γ Univ. Prop.
= T [f, g] ◦ T inl ◦ γ Univ. Prop., again
= T ([f, g] ◦ inl) ◦ γ T is functorial
= Tf ◦ γ Univ. Prop., again
= ε ◦ f f ∈ CoAlg(T)
= ε ◦ [f, g] ◦ inl Univ. Prop., again

as required. The case for inr is analogous.

Note that the coproduct in CoAlg(T) was constructed just as the coproduct
in Set. To express this observation formally, we set the forgetful functor to
relate CoAlg(T) with Set. In general, we use the following terminology:
De�nition 2.2.4. Suppose F : C → D is a functor. We say that F preserves

coproducts, if (FC,Ff, Fg) is a coproduct diagram (in D), whenever (C, f, g)
is a coproduct diagram in C.

In the proof of Lemma 2.2.3, we have shown that U : CoAlg(T) → Set
preserves coproducts. We note this as corollary:
Corollary 2.2.5. The forgetful functor U : CoAlg(T) → Set preserves co-

products.

35

2.2.2 Coequalisers

In the last section, we have given a categorical description of disjoint unions
(as coproducts). Now, we discuss another such construction, namely quoti-
enting. In category theory, this is formalised using the notion of coequalisers:
De�nition 2.2.6. Suppose f, g : A → B are arrows of some category C.
A coequaliser diagram over f and g is a triple (C, c) where C ∈ C and
c : B → C, which satis�es the following property:
For all D ∈ C and all h : B → D there is a unique u : C → D such that
u ◦ c = h.

As with coproducts, there is the following diagrammatic visualisation:

A
f //

g
// B

c //

∀h $$H
HH

HH
HH

HH
H C

∃!u
��
D

Coequalisers allow us to construct the quotient of a set by an equivalence
relation:
Example 2.2.7. Suppose B is a set and R ⊆ B × B is an equivalence
relation. We denote the equivalence class of b ∈ B wrt. R by [b]; c : B →
B/R is the canonical projection. Then (B/R, c) is a coequaliser diagram
over the projections π1 and π2, both mapping R→ B (see Exercise 2.10.1).

In general however, the arrows of which we construct coequalisers are not
the projections of an equivalence relation. The construction of coequalisers
in the general case takes the quotient by the generated equivalence relation.
This works as follows:
De�nition 2.2.8. Suppose R ⊆ B × B is a relation. The equivalence gen-

erated by R is the least equivalence relation which contains R; this relation
is denoted by R∗.

Note that generated equivalences always exist: one takes the intersection of
all equivalence relations which contain R. Using this terminology, we can
describe the construction of coequalisers in Set as follows:
Lemma 2.2.9. Suppose f, g : A→ B are functions and R∗ is the equivalence
generated by R = {(f(a), g(a)) | a ∈ A}; we denote the canonical projection

by c : B → B/R. Then (B/R, c) is a coequaliser diagram.

36

Proof. Suppose D is any set and h : B → D is any function satisfying
h ◦ f = h ◦ g. We have to show that

• There's u : B/R∗ → D with u ◦ c = h

• u is unique wrt. this property.
Denoting the equivalence class of b ∈ B wrt. R by [b], we can de�ne u by
u([b]) = h(b). We �rst show that u is well de�ned. To this end, consider
Ke(h) = {(b, b′) ∈ B × B | h(b) = h(b′)}. Then Ke(h) is an equivalence
relation and Ke(h) ⊇ R (since (b, b′) ∈ R =⇒ (b, b′) = (f(a), g(a)) for some
a ∈ A and h(b) = h◦f(a) = h◦g(a) = h(b′), hence (b, b′) ∈ S), from which we
conclude Ke(h) ⊇ R∗ by de�nition of R∗. Now [b] = [b′] implies (b, b′) ∈ R∗,
which in turn implies (b, b′) ∈ Ke(h), that is, h(b) = h(b′). The equation
u ◦ c = h is immediate from the de�nition of u. This leaves uniqueness:
Suppose v : B/R∗ → D satis�es v ◦ c = h. Then v([b]) = v ◦ c(b) = h(b) =
u([b]) by de�nition of u, hence u = v.
The construction of coequalisers in Set was quite cumbersome. Fortunately,
we don't have to repeat this construction in the category CoAlg(T): we just
have to know about the universal property, which characterises coequalisers.
The next proposition transports the construction of coequalisers to CoAlg(T).
Proposition 2.2.10. Let f, g : (A,α) → (B, β) ∈ CoAlg(T) and suppose

(C, c) is a coequaliser diagram over f and g in Set. Then ((C, γ), c) is a

coequaliser diagram in CoAlg(T), where γ is the unique morphism satisfying

β ◦ Tc = γ ◦ c..

Proof. We �rst show that our construction is well de�ned, that is, (Tc ◦β) ◦
f = (Tc◦β)◦g; otherwise our de�nition of γ would be nonsensical. We have

Tc ◦ β ◦ f = Tc ◦ Tf ◦ α since f ∈ CoAlg(T)
= T (c ◦ f) ◦ α Functoriality of T
= T (c ◦ g) ◦ α Property of coequalisers
= Tc ◦ Tg ◦ α as above
= Tc ◦ β ◦ g as above,

hence we can speak of the unique γ for which
γ ◦ c = Tc ◦ β

Note that property (2.2.2) says that c : (B, β) → (C, γ) is a morphism of
coalgebras. In order to unmask ((C, γ), c) as a coequaliser diagram, suppose
(D, δ) ∈ CoAlg(T) and h : (B, β) → (D, δ) is a morphism. We need to show
that

37

• There's u : (C, γ) → (D, δ) ∈ CoAlg(T) such that u ◦ c = h

• u is the only morphism with that property.
Since we have assumed that (C, c) si a coequaliser diagram in Set, there's a
unique u : C → D which satis�es u ◦ c = h. Hence we have to show that u
is a morphism of coalgebras, that is,

C
u //

γ

��

D

δ
��

TC
Tu
// TD

commutes. You are asked to do this yourself in Exercise 2.10.2.
As in the case of coproducts, we have constructed coequalisers as in the
category of sets, and then provided them with a transition structure. Using
the obvious analogy of De�nition 2.2.4, we note:
Corollary 2.2.11. The forgetful functor U : CoAlg(T) → Set preserves

coequalisers.

2.2.3 Pushouts

We discuss one last categorical construction, pushouts. They allow us to
form unions of systems, where certain parts are identi�ed The categorical
de�nition is the following:
De�nition 2.2.12. Suppose f : A→ B and g : A→ C are arrows in some
category C. A pushout diagram over f , g is a triple (D,h, i) with D ∈ C and
h : B → D and i : C → D, if the following universal property is satis�ed:
For all X ∈ C and all x : B → X, y : C → X with x ◦ f = y ◦ g there is a
unique u : D → X such that u ◦ i = y and u ◦ h = x.
Diagrammatically, the situation is as follows:

A
f //

g

��

B

h
�� ∀x

��

C
i
//

∀y ++

D
∃!u

 A
AA

AA
AA

X

One example of pushouts is the union of sets:
38

Example 2.2.13. Suppose B,C are sets and A = B ∩ C and D = B ∪ C.
Then (D, iB, iC), where iB : B → D and iC : C → D are the inclusions, is
a pushout diagram. To see this, suppose X is another set, x : B → X and
y : C → X satisfy x◦ jB = y ◦ jC , where jB : A→ B and jC : A→ C are the
inclusions. We de�ne u : D → X by u(d) = x(d) if d ∈ B and u(d) = y(d) if
d ∈ C. Note that u is well de�ned, since for d ∈ B ∩C we have x(d) = y(d)
by assumption on x and y. It is easy to see that u has the required property.

In the sequel, we're not only interested in pushouts of inclusion mappings.
It turns out, that in the general case, pushouts can be constructed from
coproducts and coequalisers:
Proposition 2.2.14. Suppose f : A→ B and g : A→ C are arrows of some

category C. If (B + C, inl, inr) is a coproduct diagram over B and C and

(D, d) is a coequaliser diagram over inl ◦f and in′r ◦g, then (D, d◦ inl, d◦ inr)
is a pushout diagram over f and g.

Proof. Suppose x : B → X and y : C → X satisfy x ◦ f = g ◦ y. Consider
the following diagram:

A
f //

g
��

B

inl
�� x

��

C
inr

//

y 11

B + C
d

%%JJJJJJJJ

[x,y]

,,

D
u

""E
EE

EE
EE

X

and the map [x, y] : B + C → X. Since [x, y] ◦ inl ◦ f = x ◦ f = y ◦ g =
[x, y] ◦ inr ◦ y and (D, d) is a coequaliser diagram over inl ◦ f and inr ◦ g,
there is a unique u : D → X such that v ◦ d = [x, y].
To see that (D, d ◦ inl, d ◦ inr) is a pushout diagram, we have to show that

• u ◦ d ◦ inl = x and u ◦ d ◦ inr = y

• u is unique wrt. this property.

The equations for u follow from u ◦ d ◦ inl = [x, y] ◦ inl = x; the equation for
y is derived analogously.
Now suppose v : D → X satis�es v ◦ d ◦ inl = x and v ◦ d ◦ inr = y. Then
v ◦d = [x, y] by the universal property of coproducts (cf. Lemma 2.2.2). But
u is unique wrt. u ◦ d = [x, y], hence u = v.

39

Since both coproducts and coequalisers exist in our two categories Set and
CoAlg(T) of interest, we conclude that we can construct pushouts in both.
Since pushouts were constructed using coproducts and coequalisers, and both
are preserved by the forgetful functor U : CoAlg(T) → Set, have that U also
preserves pushouts.
Corollary 2.2.15. The forgetful functor U : CoAlg(T) → Set preserves

pushouts.

2.3 More on Behavioural Equivalence

In this section, we use the constructions presented before and establish an
important property of behavioural equivalence: its transitivity. Our main
theorem is the following:
Theorem 2.3.1 (Behavioural Equivalence is Transitive). Suppose (C, γ), (D, δ)
and (E, ε) ∈ CoAlg(T) and (c, d, e) ∈ C × D × E. Then c ≈ d and d ≈ e
implies c ≈ e.

In order to show that c ≈ e, we have to construct two morphisms into some
T -coalgebra, which identify c and e. This is where the constructions of the
last chapter come in handy. Using pushouts, we can prove the above theorem
as follows:
Proof. Since c ≈ d, there is (F, φ) ∈ CoAlg(T) and a pair of morphisms
f : (C, γ) → (F, φ) and g : (D, δ) → (F, φ) with f(c) = g(d). Because d ≈ e,
we �nd (G, ρ) ∈ CoAlg(T), h : (D, δ) → (G, ρ) and i : (E, ε) → (G, ρ) with
h(d) = i(e). Consider the pushout (I, ι) of g and h in CoAlg(T):

C

f @
@@

@@
D

g

~~}}}
}} h

 A
AA

AA
E

i~~~~
~~

~

F

j A
AA

AA
G

k~~}}
}}

}

I

Since we have taken the pushout in CoAlg(T), all arrows in the above diagram
are coalgebra morphisms, in particular, j◦f and k◦i. Now j◦f(c) = j◦g(d) =
k ◦ h(d) = i ◦ k(e) by assumption on f, g, h and i and the fact that (I, ι) is
the vertex of a pushout diagram.
We obtain the following immediate corollary:
Corollary 2.3.2 (Behavioural Equivalence is an Equivalence Rela-
tion). Suppose (C, γ) ∈ CoAlg(T). Then ≈C= {(c, c′) ∈ C × C | c ≈ c′} is

an equivalence relation.

40

We can also use pushouts to give a description of behavioural equivalence on
a single system, which is simpler that the original de�nition:
Proposition 2.3.3. Suppose (C, γ) ∈ CoAlg(T) and c, c′ ∈ C. The following
are equivalent:

(i) c ≈ c′

(ii) There are (E, ε) and e : (C, γ) → (E, ε) ∈ CoAlg(T) with f(c) = f(c′).

Note that the original de�nition is in terms of a pair of morphisms. The
proof is easy:
Proof. Clearly the second statement implies the �rst. For the converse, sup-
pose c ≈ d, that is, there (D, δ), f : (C, γ) → (D, δ) and g : (C, γ) → (D, δ)
with f(c) = g(c′). Consider a pushout ((E, ε), h, i) over f and g. We have a
commuting diagram

C
f //

g

��

D

h
��

D
i
// E

where all vertices are coalgebras (we have suppressed the structure maps)
and all edges are morphisms. Thus putting e = h◦f = i◦g does the job.
Given an equivalence relation R on the carrier of some T -coalgebra (C, γ),
it is natural to ask whether we can form the quotient (C/R, γ/R), which
involves the de�nition of a transition structure γ/R : C/R→ T (C/R) on the
quotient. This is of particular interest when R is behavioural equivalence on
(C, γ), since then (C/R, γ/R) is the same as the original system (C, γ), but
with all observationally equivalent states identi�ed. We think of quotienting
by behavioural equivalence as abstracting away non-observable details. In
order to de�ne the transition structure γ/R on the quotient, we have to deal
with images �rst.

2.4 Images and Factorisations

It is well known that we can factor every function f : A→ B as f = m ◦ e,
where I is the image of f in B. In particular, every function factors as the
composition of a surjection and an injection:

A
f //

e

��

B

I

m

??~~~~~~~~

41

This factorisation is unique in the following sense:
Proposition 2.4.1. Suppose f : A → B is a function which factors as

f = m ◦ e and f = m′ ◦ e′, where

• e : A→ I is surjective, m : I → B is injective, and

• e′ : A→ I ′ is surjective, m′ : I ′ → B is injective.

Then there is a unique bijection i : I → I ′ such that

I
m

&&LLLLLL

i

��
A

e
99rrrrrr

e′ %%LLLLLL B

I ′
m′

99rrrrrr

commutes.

Proof. Exercise 2.10.5.

We now lift this property to the category CoAlg(T) of T -coalgebras. Since
every morphism of coalgebras is in particular a set theoretic function, clearly
every morphism factors as a surjection followed by an injection. What's not
clear is, that this is a factorisation in CoAlg(T), i.e. that both the injection
and the surjection are actually morphisms of coalgebras. Our result is the
following:
Theorem 2.4.2. Suppose f : (C, γ) → (D, δ) ∈ CoAlg(T). Then there

is (I, ι) ∈ CoAlg(T) and a pair of morphisms e : (C, γ) → (I, ι) and m :
(I, ι) → (D, δ) such that

(i) f = m ◦ e

(ii) f is injective and g is surjective.

Proof. Let I = f [C] = {f(c) | c ∈ C} ⊆ D denote the direct image of f .
Clearly we have set theoretic functions e : C → I and m : I → D which
satisfy f = m◦e, e surjective andm injective (put e(c) = f(c) andm(d) = d).
We have to show that e and m lift to homomorphisms of coalgebras, that is,
we need to �nd a transition structure ι : I → TI such that the diagram

C

γ

��

e // I

ι

��

m // D

δ
��

m̄
yy

TC
Te
// TI

Tm
// TD

42

commutes. We assume wlog that I 6= ∅, for if I = ∅, we have C = ∅ and
taking the empty function for ι makes both squares commute trivially. So
assume I 6= ∅.
Since m is injective and I 6= ∅, there is a left inverse m̄ : D → I of m, that is,
m̄ satis�es m̄ ◦m = idI . We put ι = Tm̄ ◦ δ ◦m. To see that this de�nition
turns e and m into homomorphisms, we have to show

• Te ◦ γ = ι ◦ e

• Tm ◦ ι = δ ◦m.

For the �rst equation, we calculate
ι ◦ e = Tm̄ ◦ δ ◦m ◦ e Def'n of ι

= Tm̄ ◦ Tm ◦ Te ◦ γ f = m ◦ e is a morphism plus functor laws
= Te ◦ γ m̄ ◦m = idI plus functor laws

For the second equation, it su�ces to show that Tm ◦ ι ◦ e = δ ◦m ◦ e since
e is a surjection. We obtain
Tm ◦ ι ◦ e = Tm ◦ Tm̄ ◦ δ ◦m ◦ e Def'n of ι

= Tm ◦ Tm̄ ◦ Tm ◦ Te ◦ γ f = m ◦ e is a morphism, functor laws
= Tm ◦ Te ◦ γ m̄ ◦m = idI , functor laws
= δ ◦m ◦ e f = m ◦ e is a morphism, functor laws

which �nishes the proof.

2.5 Quotients modulo Behavioural Equivalence

We now describe the quotient construction on coalgebras. We're not com-
pletely general here in that we only discuss quotients modulo behavioural
equivalence. We can always form the quotient of the carrier of some system
modulo behavioural equivalence, obtaining a set (of equivalence classes).
The following proposition guarantees the existence of a unique transition
structure on this set:
Proposition 2.5.1. Suppose (C, γ) ∈ CoAlg(T) and let ≈= {(c, c′) ∈ C×C |
c ≈ c′}. Then there is a unique γ/≈: C/≈→ T (C/≈) such that the canonical

projection p : C → C/≈ is a homomorphism of coalgebras.

43

Proof. Consider the diagram

C
p //

γ

��

C/≈

γ/≈
��

TC
Tp
// T (C/≈).

First suppose that there are γ0, γ1 : C/≈→ T (C/≈) with γ1 ◦ p = Tp ◦ γ =
γ2 ◦ p. If [c] ∈ C/≈, we have γ1([c]) = γ1 ◦ p(c) = γ2 ◦ p(c) = γ2([c]). Hence
γ/≈ is unique. It remains to show existence. The above considerations lead
us to de�ne

γ/≈ ([c]) = Tp ◦ γ(c),

and we now need to show that this is in fact a de�nition, that is for [c] = [c′],
we have Tp ◦ γ(c) = Tp ◦ γ(c′). So suppose c, c′ ∈ C with [c] = [c′], that
is, p(c) = p(c′), that is, c ≈ c′. By Proposition 2.3.3, there are (E, ε) and
e : (C, γ) → (E, ε) ∈ CoAlg(T) with e(c) = e(c′). By Theorem 2.4.2, we
can assume that e is a surjection (for if not, replace E by the image of e).
Consider the diagram

C

γ

��

p
//

e

**C/≈ E
f

oo

ε

��
TC

Tp //

Te

33T (C/≈) TE,
Tfoo

where p : C → C/≈ is the canonical projection and f : E → C/≈ is
de�ned by f(e(c)) = p(c), where c ∈ C. Note that f is well de�ned, since
e(c0) = e(c1) implies c0 ≈ c1. Clearly f is a surjection and f ◦ e = p.
We are now in the position to tackle our goal, that is, to show that Tp◦γ(c) =
Tp ◦ γ(c′). We do this by calculating

Tp ◦ γ(c) = Tf ◦ Te ◦ γ(c) f ◦ e = p plus functor laws
= Tf ◦ ε ◦ e(c) e is a morphism
= Tf ◦ ε ◦ e(c′) by assumption on e
= Tp ◦ γ(c). as above

Note that in the above proof, we have used quite a number of concepts
treated earlier. We have used pushouts (by appealing to Proposition 2.3.3)
and images (which have allowed us to assume e surjective).

44

2.6 Simple and Extensive Systems

We now discuss two important classes of systems: simple systems and ex-
tensive systems. The importance of simple systems lies in the fact that they
allow proofs by coinduction, while extensive systems have the property that
they incorporate all the possible observable behaviour.
We begin with simple systems. As mentioned, simple systems allow proofs
by coinduction, that is, they satisfy the coinductive proof principle:
De�nition 2.6.1. Suppose (C, γ) ∈ CoAlg(T). We say that (C, γ) is simple

or (C, γ) satis�es the coinduction proof principle, if c = c′ whenever c ≈ c′.

That is, in order to show that two states are equal, it su�ces to show that
they are behaviourally equivalent (the next chapter discusses two methods
for establishing that two states are behaviourally equivalent).
We collect some handy properties of simple systems:
Lemma 2.6.2. Suppose (C, γ) ∈ CoAlg(T) is simple.

(i) For all (D, δ) ∈ CoAlg(T) there is at most one morphism f : (C, γ) →
(D, δ) of coalgebras.

(ii) If (D, δ) ∈ CoAlg(T) and f : (D, δ) → (C, γ) is a morphism of coalge-

bras, then f is injective.

Proof. Suppose (C, γ) is simple and f, g : (D, δ) → (C, γ) are two morphisms.
Let c ∈ C. Then f(c) ≈ g(c), hence f(c) = g(c), thus f = g.
To see that any morphism is injective, suppose f : (D, δ) → (C, γ) ∈
CoAlg(T). If d, d′ ∈ D with f(d) = f(d′), we have d ≈ f(d) = f(d′) ≈ d′,
hence d = d′ by simplicity.

Note that there are cases where no morphism between two T -coalgebras
exists at all (see Exercise 2.10.4).
The other class of systems, which we brie�y mention here are called extensive.
Note that this terminology is somewhat non-standard, at least I didn't �nd
it in the literature.
De�nition 2.6.3. A system (C, γ) ∈ CoAlg(T) is called extensive, if for all
other systems (D, δ) and all d ∈ D, there is c ∈ C with c ≈ d.

In other words, an extensive system realises every possible observable be-
haviour. Extensive systems have a somewhat complimentary property com-
pared to simple systems:

45

Lemma 2.6.4. Let (C, γ) ∈ CoAlg(T). If, for all (D, δ)∈CoAlg(T) there is

a morphism f : (D, δ) → (C, γ) ∈ CoAlg(T), then (C, γ) is extensive.

Proof. Because morphisms preserve observable behaviour.

The notion of extensivity is not too important by itself, but it can be used
to give a characterisation of �nal systems, which we are going to do in the
next section.

2.7 Final Coalgebras

We now introduce a concept which will accompany us right until the end of
these notes: �nal coalgebras. The import of �nal coalgebras lies in the fact
that they provide an abstract model of all possible observations. We will
�rst give the abstract de�nition and then the promised characterisation in
terms of simplicity and extensivity.
De�nition 2.7.1. Suppose (C, γ) ∈ CoAlg(T). We say that (C, γ) is �nal,
if there is a unique morphism of coalgebras (C, γ) → (D, δ) for all (D, δ) ∈
CoAlg(T).

This already implies that a �nal system contains every possible observable
behaviour. The promised characterisation of �nal coalgebras is now as fol-
lows:
Theorem 2.7.2. Suppose (C, γ) ∈ CoAlg(T). The following are equivalent:

(i) (C, γ) is �nal.

(ii) (C, γ) is simple and extensive.

Proof. First suppose that (C, γ) is �nal. Lemma 2.6.4 shows that (C, γ)
is simple. If (D, δ) is arbitrary and u : (C, γ) → (D, δ) is the (unique)
morphism given by �nality, note that d ≈ u(d), hence (C, γ) is extensive.
Now suppose (C, γ) is simple and extensive. Let (D, δ) ∈ CoAlg(T) and
consider the relation R = {(d, c) ∈ D × C | d ≈ c}. If (d, c) and (d, c′) ∈ R,
we have c ≈ d ≈ c′, hence c ≈ c′ thus c = c′ since (C, γ) is simple. Also,
for any d ∈ D, there is a c ∈ C with (d, c) ∈ R by extensivity. Thus R is
functional, allowing us to consider u : D → C, de�ned by

u(d) = the unique c such that (d, c) ∈ R.

46

We �rst show that f is a morphism of coalgebras, that is, u makes the
diagram

D

δ
��

u // C

γ

��
TD

Tu
// TC

commute. If C = ∅, we have D = ∅ and the claim is trivial. So assume
wlog that C 6= ∅. Let d ∈ D. Then d ≈ u(d) by de�nition, hence there is
(E0, ε0) and f : (D, δ) → (E0, ε0) and g : (C, γ) → (E0, ε0) with f0(c) =
g0(u(c)). Now let ≈E0= {(e, e′) ∈ E × E | e ≈ e′}. By Theorem 2.3.1,
≈E0 is an equivalence. Put E = E0/≈E . By Proposition 2.5.1 there is a
unique transition structure ε : E → TE such that the canonical projection
E0 → E0/≈E0 is a morphism of coalgebras. Now let f = p◦f0 and g = p◦g0.
We claim that

D

f @
@@

@@
@@

u // C

g
��~~

~~
~~

~

E

commutes. For an arbitrary d0 ∈ D, we have f(d0) ≈ d0 ≈ u(d0) ≈ g◦u(d0),
thus f(d0) = g ◦ u(d0) since (E, ε) is simple.
Furthermore, g is an injection by Lemma 2.6.2. Since we have assumed
C 6= ∅, g has a left inverse ḡ : E → C satisfying ḡ ◦ g = idC . Now consider

D

δ
��

u // C

γ

��

g // E

ε
��

TD
Tu
// TC

Tg
// TE,

the right hand side commutes since g is a morphism of coalgebras. In order
to show that the left side commutes, too, it su�ces to show that Tg ◦γ ◦u =
Tg ◦ Tu ◦ δ, since Tg is injective with left inverse T ḡ. Now:

Tg ◦ γ ◦ u = ε ◦ g ◦ u g is a morphism
= ε ◦ f f = g ◦ u, see above
= Tf ◦ δ f is a morphism
= T (g ◦ u) ◦ δ f = g ◦ u, see above
= Tg ◦ Tu ◦ δ functoriality of T .

It follows from Lemma 2.6.2, that u is the only morphism of coalgebras
mapping (D, δ) → (C, γ).

47

2.8 Simple Properties of Final Systems

This section collects some simple properties of �nal systems. First, �nal
systems are unique:
Lemma 2.8.1. Suppose (Z, ζ) and (Z, ζ ′) are �nal. Then (Z, ζ) ∼= (Z ′, ζ ′).

Proof. Finality of both systems provides us with two mutually inverse mor-
phisms f : (Z, ζ) → (Z ′, ζ ′) and g : (Z ′, ζ ′) → (Z, ζ).

The second property, known as �Lambek's Lemma�, can be used (among
other applications) to show, that �nal systems don't always exist:
Theorem 2.8.2. If (Z, ζ) is �nal, then ζ is a bijection.

Proof. Consider
Z

ζ //

ζ

��

TZ

Tζ
��

! // Z

ζ

��
TZ

Tζ
// FT 2Z T !

// TZ

where ! : (TZ, Tζ) → (Z, ζ) is the unique T -morphism. By the universal
property of (Z, ζ), ! ◦ ζ = idZ .
Now look at

TZ
! //

Tζ
��

Z

ζ

��
T 2Z

T !
��

T ! // TZ

idTZ

��
TZ

idTZ

// TZ

For the left vertical arrow we have T ! ◦ Tζ = T (! ◦ ζ) = T idZ = idTZ , hence
ζ◦! = ζ◦! ◦ idTZ = idTZ ◦ T ! ◦ Tζ = idTZ .

This can be used to show, that the covariant power set functor does not
admit a �nal coalgebra:
Corollary 2.8.3. There is no �nal P-coalgebra.

The next chapter addresses the question regarding when �nal coalgebras do
exist. Moreover, we illustrate one particular area, where they come in handy:
Proofs and de�nitions by coinduction.

48

2.9 Notes

The notions of products, equalisers, pullbacks, as well as their duals are
instances of the general context of limit (resp. colimit) in a category. The
treatment of limits in the general case is beyond the scope of these notes,
but can be found in any textbook on category theory, e.g. [36, 11, 45, 8].
Our construction of pushouts is an instance of a general theorem: In any
category, the existence of �nite / arbitrary products and equalisers su�ces
to construct �nite / arbitrary limits. We have not treated uniqueness of our
categorical constructions: viewing them as limits, it can easily be seen that
they are unique up to morphisms of the appropriate structure. We have
only discussed the existence of colimits, i.e. coproducts, coequalisers and
pushouts. The construction of limits (comprising products, equalisers and
pullbacks) is far more involved; see [34, 61, 46, 21].

2.10 Exercises

Exercise 2.10.1. Show that (B/R, c) is indeed a coequaliser diagram in
Example 2.2.7.
Exercise 2.10.2. Complete the proof of Proposition 2.2.10 and show, that
u, as constructed in the proof, is indeed a morphism of coalgebras. Hint:

Use the universal property of coequalisers in a way similar to Lemma 2.2.2.
Exercise 2.10.3. In which sense are coproduct diagrams, coequaliser dia-
grams and pushout diagrams determined uniquely? Hint: Consider a �canon-
ical� notion of morphism between di�erent coproduct diagrams (resp. co-
equaliser diagrams, pushout diagrams).
Exercise 2.10.4. Give an example of two T -coalgebras, for some particular
signature functor T , such there is no morphism from one coalgebra to the
other.
Exercise 2.10.5. Prove Proposition 2.4.1.
Exercise 2.10.6. Give a description of the �nal Mealy machine in elemen-
tary terms.
Exercise 2.10.7. Show that a behaviour preserving function (in the sense of
Exercise 1.5.6) is a morphism of stream automata, if its codomain is simple
(Exercise 1.5.6 has asked you to construct a counterexample in the general
case).

49

50

Chapter 3

De�nitions and Proofs by

Coinduction

This chapter is devoted to coinduction, both as a de�nition principle and as
a proof principle. We illustrate the algebra / coalgebra duality by deriving
two coinductive de�nition principles from their algebraic counterparts iter-
ation and primitive recursion. Since coinductive de�nitions only work on
�nal coalgebras, we start with a theorem which establishes that these guys
actually do exist.

3.1 Final Coalgebras

If we want that �nal coalgebras exist, we have to put some restriction on
the endofunctor T (see Corollary 2.8.3). In this section, we show that �nal
coalgebras exist for so-called accessible functors. The existence proof makes
use of yet another categorical concept, limits. We introduce (and explain)
both concepts, before diving into the existence proof for �nal coalgebras.

3.1.1 Accessible Functors

Our proof regarding existence of �nal coalgebras will be based on the notion
of accessibility. Informally, a functor is accessible, if the action of the functor
on �large� sets can be determined from the action on small sets. The formal
de�nition is the following (recall the notation f [·] for direct image):
De�nition 3.1.1. Suppose κ is a regular cardinal. A functor T : Set → Set
is κ-accessible, if the following holds:
For all sets X and all x ∈ TX there exists a subset Y ⊆ X with card(Y) < κ
such that x ∈ (Ti)[Y], where i : Y → X is the inclusion.

51

A functor is called accessible, if it is κ-accessible for some regular cardinal κ.
Remark 3.1.2. The de�nition we have given above is not the one which
is commonly found in textbooks [11, 37, 36]. The standard de�nition of
accessibility is via preservation of �ltered colimits. If you know about �ltered
colimits, it's an easy exercise to see, that the de�nition via �ltered colimits
is (on the category of sets) equivalent to the one we have given here.
The class of accessible functors contains nearly all functors (with the excep-
tion of the powerset functor) which are of interest for us.
However, the bounded version of the powerset functor, which we introduce
presently, functor is accessible:
Notation 3.1.3. Suppose κ is a cardinal number. The bounded powerset

functor Pκ is de�ned by
Pκ(X) = {x ⊆ X | card(x) < κ} on sets X

Pκ(f)(x) = f [x] if f : X → Y is a function.
Using this notation, we can give some closure properties of the class of ac-
cessible functors:
Proposition 3.1.4. The following functors are accessible:

(i) the identity functor

(ii) all constant functors

(iii) the bounded powerset functor Pκ

Furthermore, if T, S are accessible, then so are T ◦S, T +S, T +S and TA,

whenever A is a set.

Proof. See Exercise 3.7.1.
We leave it as another exercise to show, that the unbounded powerset functor
P is not accessible.

3.1.2 Limits along Sequences

The second notion which we discuss before we can embark on the existence
proof for �nal coalgebras is the notion of limits along (ordinal indexed) se-
quences. As with our discussion of coproducts, coequalisers and pushouts,
limits along sequences are an instance of a more general notion, the discus-
sion of which is beyond the scope of these notes. For sequences, however,
the situation is a follows:

52

De�nition 3.1.5. Suppose o is an ordinal and C is a category. A o-sequence
in C consists of

• An object Cα ∈ C for all α < o

• An arrow fα
β : Cα → Cβ for all β ≤ α < o

such that the following conditions are met:

• fα
α = idCα for all α < o

• fβ
γ ◦ fα

β = fα
γ for all γ ≤ β ≤ α.

A cone over an o-sequence is a pair (C, (pα)α<o) consisting of a set C and a
family of arrows pα : C → Cα such that fα

β ◦ pα = pβ for all β ≤ α < o.
A morphism of cones m : (C, (pα) → (D, (qα)) is a function m : C → D such
that such that qα = pα ◦ f for all α < o.
Finally, a cone (C, (pα)) is limiting, if for any other cone (D, (qα) there is a
unique morphism u : C → D of cones.

The use of limits is crucial for our construction of the �nal coalgebra. How-
ever, we don't (at least not yet) know whether limits exist. This is the next
(easy) step which we take:
Lemma 3.1.6. Every o-sequence has a limiting cone, which is unique up to

morphisms of cones.

Proof. Take

C = {(cα)α<o ∈
∏
α<o

Cα | ∀γ ≤ β < o.fβ
γ (cβ) = cγ}

and de�ne the projections by pβ((cα)α<o) = cβ . It is now easy to verify the
required properties.

As with coproducts, pushouts and the like, we just do the underlying con-
struction of limits once explicitely. When we use limits later on, we'll reason
with the universal property.
We now dive into the construction of �nal coalgebras.

53

3.1.3 The Terminal Sequence

We begin with a discussion of the terminal sequence, which is best thought
of as a sequence of approximants to the �nal coalgebra (that is, the �nal
object in the category CoAlg(T)). A more detailed account of the terminal
sequence can be found in [62].
The terminal sequence associated with T is an ordinal indexed sequence of
sets (Zα) together with a family (pα

β) of functions pα
β : Zα → Zβ for all

ordinals β ≤ α such that

• Zα+1 = TZα and pα+1
β+1 = Tpα

β for all β ≤ α

• pα
α = idZα and pα

γ = pβ
γ ◦ pα

β for γ ≤ β ≤ α

• The cone (Zα, (pα
β)β<α) is limiting1 whenever α is a limit ordinal.

Thinking of Zα as the α-fold application of T to the limit 1 of the empty
diagram, we sometimes write Zα = Tα1 in the sequel. With this notation,
the terminal sequence of T is the continuation of the sequence

1 T1
!oo T 21

T !oo T 31
T 2!oo . . .

through the class of all ordinal numbers, where 0 is considered as a limit
ordinal. Intuitively, Tα1 represents behaviours which can be exhibited in α
steps. For example, if TX = D×X and n ∈ N, then Tn1 ∼= Dn contains all
lists of length n.
Note that every coalgebra (C, γ) gives rise to a cone (C, (γα : C → Tα1))
over the terminal sequence as follows:

• If α = β + 1 is a successor ordinal, let γα = Tγβ ◦ γ : C → Tα1.
• If α is a limit ordinal, γα is the unique map for which γβ = pα

β ◦ γα for
all β < α.

Our plan is to construct a �nal coalgebra via iteration along the terminal
sequence. The next lemma gives us an upper bound for the termination
of this construction. Basically it says that we need not go further than
the accessibility degree of the endofunctor under consideration, since further
steps only cut down on the constructed object.
Lemma 3.1.7. Suppose T is κ-accessible. Then pκ+1

κ is monic.

1See [36] for the de�nition of limiting cones.

54

Proof. Suppose pκ+1
κ (x) = pκ+1

κ (y) for x, y ∈ Zκ+1. Then pκ+1
α (x) = pκ

α ◦
pκ+1

κ (x) = pκ
α◦pκ+1

κ (y) = pκ+1
α (y) for all α ≤ κ. Furthermore, by de�nition of

the terminal sequence, Tpκ
α(x) = P κ+1

α+1 (x) = pκ+1
α+1(y) = Tpκ

α(y) for all α < κ.
Since T is κ-accessible, there exists a subset S ⊆ Zκ with card(S) < κ and
x′, y′ ∈ S such that x = Ti(x′) and y = Ti(y′), where i : S → Zκ is the
inclusion. Hence T (pκ

α ◦ i)(x′) = Tpκ
α(x) = Tpκ

α(y) = T (pκ
α ◦ i)(y′) for all

α < κ.
We claim that there exists some ordinal σ < κ such that pκ

σ ◦ i is monic.
If the claim is established, we conclude x′ = y′ (since any Set-endofunctor
preserves monics) and x = Ti(x′) = Ti(y′) = y.
To prove the claim, consider the set S′ = {s ⊆ S | card(s) = 2} of distinct
elements of S. For all s = {s1, s2} ∈ S′, there exists an ordinal σs < κ such
that pκ

σs
(s1) 6= pκ

σs
(s2) because s1 6= s2. Since κ is regular, card(S′) < κ and

σ = ∪{σs | s ∈ S′} < κ. It is immediate to see that pκ
σ ◦ i is monic.

Since pκ+1
κ is monic, there exists a left inverse e of pκ+1

κ , that is, e ◦ pκ+1
κ =

idTZκ . Note that e quali�es as coalgebra structure on Zκ. The coalgebra
thus obtained has the property that any morphism of cones (C, (γα)α<κ) →
(Zκ, (pα)α<κ) whose domain is induced by an object (C, γ) ∈ CoAlg(T), is
actually a morphism of coalgebras:
Lemma 3.1.8. Suppose T is κ-accessible and e is a left inverse of pκ+1

κ .

Then γκ : (C, γ) → (Zκ, e) is a morphism of coalgebras.

Proof. Note that γκ : C → Zκ is the unique morphism for which γα = pκ
α◦γκ

for all α < κ. Consider the diagram
C

γ

��

γκ // Zκ

e

��
TC

Tγκ

// TZκ
pκ+1

κ

// Zκ.

In order to see that e ◦ γκ = Tγκ ◦ γ, it su�ces to show that pκ+1
κ ◦ e ◦ γκ =

pκ+1
κ ◦Tγκ ◦γ, since pκ+1

κ is monic. Since Zκ is the vertex of a limiting cone,
the last equality can be established by showing that

pκ
α ◦ pκ+1

κ ◦ e ◦ γκ = pκ
α ◦ pκ+1

κ ◦ Tγκ ◦ γ.

If α = β + 1 is a successor ordinal, we obtain pκ
α ◦ pκ+1

κ ◦ e ◦ γκ = pκ+1
α ◦ e ◦

pκ+1
κ ◦γκ+1 = pκ+1

α ◦γκ+1 = γα for the left side of the above equation. For the
right side, we calculate pκ

α ◦pκ+1
κ ◦Tγκ ◦γ = pκ+1

β+1 ◦Tγκ ◦γ = T (pκ
β ◦γκ)◦γ =

Tγβ ◦ γ = γα by de�nition of the sequence (γα). If α is a limit ordinal, the
equation follows at once.

55

Since every T -coalgebra (C, γ) induces a map γκ : C → Zκ, we have just
shown that (Zκ, e) is weakly terminal. We note this as:
Corollary 3.1.9. Suppose T is κ-accessible and e is a left inverse of pκ+1

κ .

Then (Zκ, e) is weakly terminal.

The last corollary in particular implies the existence of a �nal coalgebra. We
note this as
Theorem 3.1.10. Suppose T is accessible. Then there exists a �nal T -
coalgebra.

Proof. In Corollary 3.1.9 we have seen that T admits a weakly �nal coalgebra
(C, γ). Put Z = CmbeqC (where ≈C= {(c, c′) | c ≈ c} as usual) and
equip Z with the unique transition structure ζ : Z → TZ, which turns the
projections p : C → CmbeqC = Z into a morphism. Clearly (Z, ζ) is simple
and extensive, therefore �nal in CoAlg(T).

However, we can extract more information from our proof. We can extract a
proof principle for showing that two states are behaviourally equivalent: this
is the case if and only if they have the same projections into the terminal
sequence.
In the theorem, (Z, ζ) denotes the �nal T -coalgebra; the unique morphism
(E, ε) → (Z, ζ) is denoted by !ε.
Theorem 3.1.11 (Induction Along the Terminal Sequence). Suppose
T is κ-accessible and (C, γ), (D, δ) ∈ SetT . The following are equivalent for

(c, d) ∈ C ×D:

(i) c and d are behaviourally equivalent

(ii) !γ(c) =!δ(d)

(iii) For all α < κ: γα(c) = δα(d).

Proof. Obviously (i) =⇒ (ii) =⇒ (iii). So assume γα(c) = δα(d) for
all α < κ. Consider the cones (C, (γα)α<κ) and (D, (δα)α<κ). By Lemma
3.1.8, the mediating morphisms γκ : C → Zκ and δκ : D → Zκ are coalgebra
morphisms with codomain (Zκ, e) where e is a left inverse of pκ+1

κ . Since
γα(c) = δα(d) for all α < κ, we have γκ(c) = γκ(d). Hence c and d are
behaviourally equivalent.

Intuitively, γα(c) represents the behaviour of c, which is observable in at most
α transition steps. Thus γα(c) = δα(d) asserts that the α-step behaviour of
c and d coincide. The theorem therefore allows us to conclude that c and d

56

are behaviourally equivalent if their α-step behaviours coincide for all α less
than the accessibility degree of T . In particular, it gives us a method for
proving equalities between states of a simple (in particular �nal) system: we
can use the theorem to show that two states are behaviourally equivalent,
and then conclude that they are equal using simplicity; this is sometimes
called a proof by coinduction. We illustrate the theorem by means of some
examples.
Example 3.1.12. Suppose L is some �nite or in�nite set (of labels).
(i) Suppose TX = L×X. Then T is polynomial, hence ω-accessible. Note

that the elements Tn1 ∼= Ln of the terminal sequence associated to T
are the sequences of labels, which have length n.
Given a T -coalgebra (C, γ), every state c0 ∈ C gives rise to an in�nite
sequence c0 l1−→ c1

l2−→ c2 . . . by putting c l−→ c′ i� γ(c) = (l, c′). In
this setup, we have γn(c0) = (l1, . . . , ln), that is, the sequence of the
�rst n labels given by c0. Theorem 3.1.11 states that two states c and
d of T -coalgebras are behaviourally equivalent i� they give rise to the
same �nite sequences of labels.

(ii) Suppose TX = Pω(L × X). Because Pω is ω-accessible, T is ω-
accessible, since ω-accessible functors are closed under composition.
A T -coalgebra (C, γ) is a �nitely branching labelled transition system:
put c l−→ c′ i� (l, c′) ∈ γ(c). Given two T -coalgebras (C, γ) and
(D, δ), we de�ne a relation ∼n on C ×D by induction on n as follows:
∼0= C ×D and c ∼n+1 d i�
• ∀c′.c l−→ c′ =⇒ ∃d′.d l−→ d′ and c′ ∼n d

′;
• ∀d′.d l−→ d′ =⇒ ∃c′.c l−→ c′ and c′ ∼n d

′.
We obtain that c ∼n d if and only if γn(c) = δn(d). The relation
∼n was used to characterise bisimilarity for �nitely branching labelled
transition systems in [24]. Intuitively, c ∼n d if c and d are bisimilar
for the �rst n transition steps. In this setting, Theorem 3.1.11 states
that c and d are behaviourally equivalent i� c ∼n d for all n ∈ ω.

(iii) Suppose κ is a regular cardinal such that κ > ω and consider TX =
Pκ(X). Then T is κ-accessible.
Now take C = ω + 2 and γ(c) = {c′ | c′ ∈ c}. One obtains γα(c) =
γα(c′) i� c∩α = c′∩α, for c, c′ ∈ C and α < κ. Hence γα(ω) = γα(ω+1)
for all α ≤ ω but γω+1(ω) 6= γω+1(ω + 1). Hence ω and ω + 1 are not
behaviourally equivalent.
Writing c→ c′ for c′ ∈ γ(c), this can be explained by the fact that ω+1
has a successor (namely ω) which allows for arbitrary long sequences

57

ω → nk → · · · → n0 = 0, for n0 < n1 < . . . nk < ω, whereas there is
no successor of ω with this property.
Note that this also shows that induction up to the accessibility degree
of T is necessary to establish behavioural equivalence of two points.

3.2 On Categorical Duality

In the last section, we have shown, how one can do proofs by coinduction:
show that two states of a simple system are behaviourally equivalent and
conclude that they are equal because of simplicity. As with induction, there's
also a de�nition principle, which allows us to do proofs by coinduction. In
order to get a better understanding of coinductive de�nitions, we present
them in line with their inductive counterparts. The present chapter, on
categorical duality, provides us with the means to establish the link between
induction and coinduction on a formal level.
We begin with the description of opposite categories:
De�nition 3.2.1. Suppose C is a category. The opposite category Cop is
given as follows:

• objCop = obj(C)

• Cop(A,B) = C(B,A)

• 1A (in Cop) = 1A (in C)
• g ◦Cop f = f ◦C g

where ◦C denotes composition of arrows in C and ◦Cop is composition in C.
It is easy to see that Cop is a category, and we leave the proof to the reader.
Note that the passage from a category C to its opposite Cop is functorial.
In order to avoid the confusion which sometimes arises when working both
with C and Cop (where am I?), we make the following convention:
Notation 3.2.2. If A ∈ C is an object of C, we write Aop for the corre-
sponding object in Cop; if it's clear from the context whether we're in C or
in Cop, we drop the superscript. Also, if f : A → B is an arrow in C, we
write fop for the associated arrow in Cop.
Note that fop : Bop → Aop for an arrow f : A → B in C. Any functor
between two categories automatically extends to a functor on the associated
opposites:
Lemma 3.2.3. Suppose F : C → D is a functor. Then so is F op : Cop →
Dop, which is given by

F op(Cop) = F (C)op and F op(fop) = F (f)op

for objects Cop and arrows fop of Cop.

58

Proof. Follows directly from the de�nitions.

We can now introduce the concept of algebras for an endofunctor in a cat-
egorical context and use duality to transfer results and intuitions from the
world of algebras to coalgebras.
De�nition 3.2.4. Let C be a category. A T -algebra is a pair (A,α) where
A ∈ C is an object and α : TA→ A is an arrow.
If (A,α) and (B, β) are T -algebras, then a morphism f : A → B is a mor-

phism of algebras, if f ◦ α = Tf ◦ β.
Diagrammatically speaking, an algebra morphism makes the diagram

TA

α

��

Tf // TB

β
��

A
f
// B

commute. Extending the de�nition of coalgebras from the category of sets
to other categories, we arrive at the following observations:

T -algebras (A,α) in C ⇐⇒ T op- coalgebras (Aop, αop) in Cop.
Algebra-morphisms f : (A,α) → (B, β) ⇐⇒ coalgebra-morphisms

f : (Aop, αop) → (Bop, βop)

What this means is the following: If we prove a statement about algebras (or
coalgebras) in an arbitrary category by purely categorical means, then the
statement also holds for coalgebras (resp. algebras) in arbitrary categories.
Hence we can use categorical duality as tool to economise on proofs, and we
shall do so when treating inductive de�nitions and their coinductive coun-
terparts simultaneously, and then later transfer the results using categorical
duality.
Note that nearly all of our constructions (products, coproducts, pushouts,
etc.) were formulated in a purely categorical way, and therefore we have the
dual notions readily available.
We have the following line-up of concepts and their duals:

Initial Object An object I is initial, if, for all A ∈ C, there's a unique
arrow u : I → A.

Final Object F is a �nal (or terminal) object of C, if F op is an initial
object of Cop.

59

Product Diagram A product diagram over A,B ∈ C is a triple (P, p1 :
P → A, p2 : P → B) such that:
For all X ∈ C and all f1 : X → A and f2 : X → B there's a unique
u : X → P such that u ◦ pi ◦ u = qi for i = 1, 2.

Coproduct Diagram A coproduct diagram (over A,B ∈ C) is a triple
(C, c1, c2) such that (Cop, cop

1 , c
op
2) is a product diagram in Cop.

Equaliser Diagram An equaliser diagram (over a pair f, g : A → B of
parallel arrows) is a tuple (E, e : E → E) such that:
For all h : C → A with f ◦ h = g ◦ h there's a unique u : C → E with
e ◦ u = h.

Coequaliser Diagram A coequaliser diagram (over a pair f, g : A→ B of
parallel arrows) is a tuple (C, c : B → C) such that (Cop, cop) is an
equaliser diagram over fop and gop in Cop.

Pullback Diagram A pullback diagram over a pair of arrows f1 : B → C
and f2 : C → D with common codomain is a triple (A, p1 : A→ B, p2 :
A→ C) such that:
For allX ∈ C and all h1 : X → B and h2 : X → C with f1◦h1 = f2◦h2

there's a unique u : X → A such that pi ◦ u = hi for i = 1, 2.
Pushout Diagram A pushout diagram over a pair of arrows f1 : A → B

and f2 : A → C is a triple (D, p1, p2) such that (Dop, pop
1 , p

op
2) is a

pullback diagram over fop
1 and fop

2 in Cop.
T -Algebra A T -algebra is a pair (A,α) where A ∈ C and α : A→ TA).
T -coalgebra A T -coalgebra is a pair (C, γ) such that (Cop, γop) is an T op-

algebra in Cop.
Algebra morphism An algebra morphism between T -algebras (A,α) and

(B, β) is an arrow f : A→ B such that f ◦ α = β ◦ Tf .
Coalgebra Morphism A coalgebra morphism between T -coalgebras (C, γ)

and (D, δ) is an arrow f : C → D such that fop is an algebra morphism
between the T op-algebras (Cop, γop) and (Dop, δop).

3.3 Coinductive De�nitions

In the following, we present two de�nition principles for functions on coalge-
bras: coiteration and primitive corecursion. Both are obtained by dualising
the corresponding principles, as known from the natural numbers (or other
algebraic structures).

60

In the following, we discuss algebras and coalgebras simultaneously. Dually
to coalgebras, initial algebras are of special importance in the context of
algebras:
De�nition 3.3.1. Suppose T : C → C is an endofunctor and (A,α) is a
T -algebra. Then (A,α) is initial, if, for every other T -algebra (B, β), there
exists a unique homomorphism u : (A,α) → (B, β).
Of course, an initial T -algebra is the same as a �nal T op-coalgebra. In the
sequel, will have to consider initial algebras / �nal coalgebras for di�erent
signatures. In order to avoid confusion, we introduce the following:
Notation 3.3.2. The initial T algebra (if it exists) is denoted by (µX.TX, in),
the �nal T -coalgebra (again subject to its existence) by (νX.TX, out).
We begin with the discussion of the duality between iteration and coiteration.

3.3.1 Iteration and Coiteration

We begin with the more familiar concept of iteration: On the natural num-
bers, this amounts to saying that a pair of functions f0 : 1 → A and
fs : A → A uniquely determine a function f : N → A via f(0) = f0(0)
and f(n + 1) = fs(f(n)). In order to see the duality with coalgebras, we
have to lift this principle to arbitrary initial algebras.
Theorem 3.3.3 (Iteration). For all f : TA → A there exists a unique

g : µX.TX → A such that

TµX.TX

in
��

Tg // TA

f

��
µX.TX g

// A

commutes.

Proof. Because µX.TX is the initial algebra.
Example 3.3.4 (Iteration on N). Suppose TX = 1 + X. Then [0, s] :
1 + N → N is initial.
Given a0 : 1 → A and as : A→ A, then there is a unique g : N → A making

1 + N
[0,s]

��

1+g // A

[a0,as]

��
N g

// A

61

commute. That is, g is the unique solution to the equations
g ◦ 0 = a0

g ◦ s = as ◦ g.

Dually, we have
Theorem 3.3.5 (Coiteration). For all f : C → TC there exists a unique

g : C → νX.TX such that

C
g //

f
��

νX.TX

out
��

TC
Tg

// TνX.TX

commutes.

There is no need for a proof: the theorem is just the dual version of Theorem
3.3.3 (although it is of course immediate that the statement just says that
�nal coalgebras are �nal). Let's give an example of a de�nition by coiteration:
Example 3.3.6 (Coiteration on Streams). Let TX = L × X for some
�xed set L and denote the set of (in�nite) sequences over L by LN = {f |
f : N → L}. Then 〈hd, tl〉 : LN → L × LN is �nal, where hd(f) = f(0) and
tl(f) = λn.f(n+ 1) (see for example [29], Section 6.3).
Given fh : C → L and ft : C → C, there is a unique g : C → LN such that

C

〈fh,ft〉
��

g // LN

〈hd,tl〉
��

L× C
L×g

// L× LN

commutes. That is, there's a unique solution g to the set of equations
hd ◦ g = fh

tl ◦ g = g ◦ ft.

Let's set up a coiterative arrow for merging of streams:
Example 3.3.7 (Merging of Streams). We're looking for a function
merge : LN × LN → LN satisfying the equations

hd ◦merge(s1, s2) = hd(s1)
tl ◦merge = merge(s2, tl(s1))

62

De�ne fh : LN × LN → L by fh(s1, s2) = hd ◦ π1 and ft = 〈π2, tl ◦ π1〉.
By the previous example, there's a unique merge : LN × LN → LN such that

hd ◦merge = fh = hd ◦ π1

tl ◦merge = merge ◦ ft = merge ◦ 〈π2, tl ◦ π1〉.

Throwing in the arguments we arrive at hd◦merge(s1, s2) = hd◦π1(s1, s2) =
hd(s1) and tl ◦merge(s1, s2) = merge ◦ 〈π2, tl ◦ π1〉(s1, s2) = merge(s2, tl(s1)),
as desired.

3.3.2 Primitive (Co)Recursion

Primitive corecursion is for coalgebras what primitive recursion is for alge-
bras. In a nutshell, primitive recursion on algebras works as follows: Given
two functions f : P×1 → A and g : P×N×N → A there's a unique function
h : P × N → A such that

h(p, 0) = f(p, 0)
h(p, n+ 1) = g(p, n, h(p, n)).

The set P is just a set of parameters and by no means special; for simplicity,
we just treat the case without parameters. As with coiteration, we �rst
generalise primitive recursion to arbitrary algebras, give a categorical proof
and then apply duality.
Theorem 3.3.8 (Primitive Recursion). For all f : T ((µX.TX)×A) → A
there exists a unique g : µX.TX → A such that

TµX.TX

in
��

T 〈id,g〉 // T (µX.TX ×A)

f

��
µX.TX g

// A

(3.1)

commutes.

Proof. Consider the diagram
µX.TX

in
��

Th // T (µX.TX ×A)

〈in◦Tπ1,f〉
��

µX.TX
h

// µX.TX ×A.

(3.2)

By the iteration theorem, h is unique wrt. making the above diagram com-
mute.

63

Claim: π1 ◦ h = id.
This follows from commutativity of the composite diagram

µX.TX

in
��

Th // T (µX.TX ×A)

〈in◦Tπ1,f〉
��

Tπ1 // TµX.TX

in
��

µX.TX
h

// µX.TX ×A π1

// µX.TX,

where the right square commutes by functoriality of T . More precisely, π1◦h
makes the diagram

TµX.TX

in
��

π1◦h // TµX.TX

in
��

µX.TX
Tπ1◦h

// µX.TX

commute, and so does the identity. By the universal property of initial
algebras, we have π1 ◦ h = id.
We show that g = π2 ◦ h has the required property, that is, it makes (3.1)
commute. With an eye to (3.2), we calculate

f ◦ T 〈id, g〉 = π2 ◦ 〈in ◦ Tπ1, f〉 ◦ Th since f = π2 ◦ 〈in ◦ Tπ1, f〉
= π2 ◦ h ◦ in (3.2) commutes
= π2 ◦ 〈id, g〉 ◦ in

= g ◦ in.

It remains to show that g is unique wrt. making (3.1) commute. So assume
g : µX.TX → A has this property. It su�ces to show that h = 〈id, g〉 makes
(3.2) commute. Let

LHS = 〈in ◦ Tπ1, f〉 ◦ Th
RHS = h ◦ in

By the universal property of cartesian products, it su�ces to show that
πi ◦ LHS = πi ◦RHS

for i = 1, 2.
For i = 1, we calculate

π1 ◦ LHS = in ◦ Tπ1 ◦ Th
= in ◦ T (π1 ◦ 〈id, g〉) since h = 〈id, g〉
= in

= π1 ◦ 〈id, g〉 ◦ in

= π1 ◦RHS.

64

The case i = 2 is even easier, and we obtain
π2 ◦ LHS = f ◦ T 〈id, g〉 since h = 〈id, g〉

= g ◦ in (3.1) commutes
= π2 ◦ 〈id, g〉 ◦ in

= π2 ◦RHS,

so we're done.

The next example shows, that our generalisation was correct with respect to
our motivating example.
Example 3.3.9 (Primitive Recursion on N). Suppose TX = 1+X with
initial algebra [0, s] : 1 + N → N. Given a0 : 1 → A and as : N × A → A,
there's a unique g : N → A such that

1 + N
[0,s]

��

1+〈id,g〉 // 1 + N×A

[a0,as]

��
N g

// A

commutes. In other words, g solves the equations
g ◦ 0 = a0

g ◦ s = as ◦ 〈id, g〉

If you prefer explicit arguments, then the second equation reads g(n+ 1) =
f(n, g(n)).

Reversing the directions of the arrows, we obtain a de�nition principle for
coalgebras. Note that coproducts (denoted by +) are the dual of products
(denoted by ×).
Theorem 3.3.10 (Primitive Corecursion). For all f : C → T (νX.TX+
C) there exists a unique g : C → νX.TX such that

C

f
��

g // νX.TX

out
��

T (νX.TX + C)
T [id,g]

// T (νX.TX)

commutes.

65

Example 3.3.11 (Primitive Corecursion on Streams). Let TX = L×
X as above, and recall �nality of 〈hd, tl〉 : LN → L× LN.
Given fh : C → L and ft : C → LN + C, there's a unique g : C → LN such
that

C

〈fh,ft〉
��

g // LN

〈hd,tl〉
��

L× (LN + C)
L×[id,g]

// L× LN

commutes.
Equationally speaking, g satis�es

hd ◦ g = fh

tl ◦ g = [id, g] ◦ ft

Appealing to the intuition that coproducts are disjoint unions (and leaving
the coproduct injections implicit), we can rewrite the second equation to

tl ◦ g(s) =

{
ft(s) if ft(s) ∈ LN

g ◦ ft(s) if ft(s) ∈ C
.

We de�ne insertion into sorted streams coinductively:
Example 3.3.12 (Sorted Insertion). Let TX = R × X. We're looking
for a function insert : RN × R → RN which satis�es

hd ◦ insert(s, r) =

{
r if r < hd(s)
hd(s) if hd(s) ≤ r

(3.3)

tl ◦ insert(s, r) =

{
s if r < hd(s)
insert(tl(s), r) if hd(s) ≤ r

(3.4)

In order to obtain insert, we de�ne fh as to be expected, that is,

fh(s, r) =

{
r if r < hd(s)
hd(s) if hd(s) ≤ r

and we let
ft(s, r) =

{
s ∈ RN if r ≤ hd(r)
(tl(s), r) ∈ RN × R if hd(s) ≤ r

By the previous example, there's a unique arrow insert : RN × R → RN

satisfying
hd ◦ g = fh

tl ◦ g = [id, g] ◦ ft.

66

So the �rst equation for insert is clearly satis�ed. Regarding the second, we
calculate

tl ◦ insert(s, r) = [id, insert] ◦ ft(s, r)

= [id, insert](

{
s if r < hd(s)
(tl(s), r) if hd(s) ≤ r

)

=

{
s if r < hd(s)
insert(tl(s), r) if hd(s) ≤ r.

So merge has the required property.

3.4 Proofs by Terminal Sequence Induction

This section describes one class of applications of induction along the termi-
nal sequence: We show how to use Theorem 3.1.11 to establish properties of
co-recursively de�ned functions.
In the examples, we �x the endofunctor TX = R×X, where R denotes the
set of reals. We have seen in Section 1.1.5 that every T -coalgebra de�nes a
set of in�nite streams of real numbers. In particular, CoAlg(T) has a �nal
object (Z, ζ), where Z = Rω is the set of all in�nite sequences of real numbers
and ζ((rn)n∈ω) = (r0, (rn+1)n∈ω) computes both head and remainder of a
stream. In the sequel, we write ζ = 〈hd, tl〉 to denote the �rst and second
component of ζ.
One readily establishes that T is ω-accessible; hence we can prove properties
of states of T -coalgebras by induction up to ω: If z0, z1 ∈ Z, we have z0 = z1
i� ζn(z0) = ζn(z1) for all n ∈ ω, where ζn : Z → Tn1 is de�ned as in Section
3.1.3. Note that the base case (n = 0) is always trivial.
The �rst example, taken from Bartels [9], de�nes componentwise addition
⊕ of streams of reals using coiteration. We then use induction along the
terminal sequence to show that ⊕ is a commutative operator.
Example 3.4.1. There is a unique function ⊕ : Z × Z → Z such that

hd(x⊕ y) = hd(x) + hd(y)
tl(x⊕ y) = tl(x)⊕ tl(y)

for all x, y ∈ Z.
It is intuitively obvious, and can be � using an explicit representation of
hd, tl and ⊕ � easily established that ⊕ is commutative, i.e. x ⊕ y = y ⊕ x
for all x, y ∈ Z. In order to demonstrate the power of Theorem 3.1.11, we
give an alternative proof, which, as a by-product, omits the need for explicit
representations.

67

Example 3.4.2. x⊕ y = y ⊕ x for all x, y ∈ Z.
Proof. De�ne f : Z×Z → R×Z×Z by f(x, y) = (hd(x)+hd(y), tl(x), tl(y)).
Then ⊕ : Z × Z → Z is the unique function satisfying ζ ◦ ⊕ = f ◦ T⊕. In
order to show the commutativity of ⊕, it su�ces to establish that ζn(x⊕y) =
ζn(y ⊕ x) for all x, y ∈ Z. If n = 0, there is nothing to show. If n = m + 1
this is just a matter of calculation:

ζn(x⊕ y) = Tζm ◦ ζ(x⊕ y)
= Tζm ◦ T ⊕ ◦f(x, y)
= (hd(x) + hd(y), ζm(x⊕ y))
= (hd(y) + hd(x), ζm(y ⊕ x)) (by induction hypothesis)
= ζn(y ⊕ x)

which �nishes the proof.
We now give a second example for a proof by coinduction: picking up Ex-
ample 3.3.12 again, we show that, for sorted insertion, the order in which we
insert two elements into a stream is irrelevant.
Example 3.4.3. insert(x, insert(y, s)) = insert(y, insert(x, s)) for all x, y ∈ R
and all s ∈ Z.
Proof. We use Theorem 3.1.11 and show that

ζn(insert(x, insert(y, s))) = ζn(insert(y, insert(x, s))) (3.5)
for all n < ω, x, y ∈ R and s ∈ Z. Again, there is nothing to show for n = 0.
If n = m+ 1, this is equivalent to
Tζm ◦ T [insert, id] ◦ f(x, insert(y, s)) = Tζm ◦ T [insert, id] ◦ f(y, insert(x, s))

(3.6)
which in turn holds if the validity of both equations

f1(x, insert(y, s)) = f1(y, insert(x, s)) (3.7)
and
ζm ◦ [insert, id] ◦ f2(x, insert(y, s) = ζm ◦ [insert, id] ◦ f2(y, insert(x, s) (3.8)

can be established.
It is immediate that (3.7) holds, since Equation (3.3) implies that both sides
evaluate to min(x, y, hd(s)). Abbreviating the left and right hand side of
(3.8) by LHS and RHS, respectively, we obtain

LHS = ζm ◦

{
insert(x, tl ◦ insert(y, s)) if x > hd ◦ insert(y, s)
insert(y, s) if x ≤ hd ◦ insert(y, s)

68

and

RHS = ζm ◦

{
insert(y, tl ◦ insert(x, s)) if y > hd ◦ insert(x, s)
insert(x, s) if y ≤ hd ◦ insert(x, s)

We distinguish the di�erent cases accordingly.
Case 1: x > hd ◦ insert(y, s) and y > hd ◦ insert(x, s). Then LHS = ζm ◦
insert(x, tl◦insert(y, s)) = ζm◦insert(x, insert(y, tl(s)) = ζm◦insert(y, insert(x, tl(s)) =
ζm◦ insert(y, tl◦ insert(x, s)) = RHS using the induction hypothesis (for tl(s))
and Equation (3.3).
Case 2: x > hd ◦ insert(y, s) and y ≤ hd ◦ insert(x, s). Then LHS = ζm ◦
insert(x, tl ◦ insert(y, s)) = ζm ◦ insert(x, s), again using (3.3).
Case 3: x ≤ hd ◦ insert(y, s) and y > hd ◦ insert(x, s). The claim follows as
with case 2.
Case 4: x ≤ hd◦ insert(y, s) and y ≤ hd◦ insert(x, s). Since hd◦ insert(x, s) =
min(x, hd(s)), we conclude x ≤ min(y, hd(s)) ≤ y ≤ min(x, hd(s)) ≤ x,
hence x = y and the claim is obvious.

3.5 Bisimulation Proofs

Another alternative for establishing that a pair of states is behaviourally
equivalent is via bisimulations. Sloppily speaking, a bisimulation between
two coalgebras is a relation, which is transition closed. The formal de�nition
is as follows:
De�nition 3.5.1. Suppose (C, γ), (D, δ) ∈ CoAlg(T). A relation B ⊆ C×D
is a bisimulation, if there exists β : B → TB such that π1 : (B, β) → (C, γ)
and π2 : (B, β) → (D, δ) are morphisms of coalgebras.
We call (c, d) ∈ C ×D bisimilar, if there is a bisimulation B ⊆ C ×D with
(c, d) ∈ B.
The latter requirement can be expressed diagrammatically by saying that

C

γ

��

B

β

��

π1oo π2 // D

δ
��

TC TD
Tπ1

oo
Tπ2

// TD

commutes. Clearly, bisimilarity implies behavioural equivalence:
Proposition 3.5.2. Suppose (C, γ), (D, δ) ∈ CoAlg(T) and (c, d) ∈ C ×D
are bisimilar. Then c and d are behaviourally equivalent.

69

Proof. Follows at once, since behavioural equivalence is an equivalence rela-
tion.
For the functor TX = R × X, we have the following characterisation of
bisimulations:
Example 3.5.3. Suppose (C, 〈hdC , tlC〉) and (D, 〈hdD, tlD〉) are T -coalgebras
for TX = R×X. Then B ⊆ C ×D is a bisimulation if and only if

hdC(c) = hdD(d) and (tlC(c), tlD(d)) ∈ B

for all (c, d) ∈ B.
We can use bisimulations to show that componentwise addition of streams
is commutative as follows:
Example 3.5.4. We reconsider pointwise addition, already discussed in Ex-
ample 3.4.1 and show that x⊕ y = y ⊕ x for all x, y ∈ Z. If (x, y) ∈ Z × Z
are arbitrary, we have to exhibit a bisimulation B with (x, y) ∈ B. We put

B = {(tln(x)⊕ tln(y), tln(y)⊕ tln(x)) | n ≥ 0}

It's obvious how to de�ne the transition relation, which witnesses that B is
a bisimulation:
β(tln(x)⊕tln(y), tln(y)⊕tln(x)) = (hd◦tln(x)+hd◦tln(y), (tln+1(x)⊕tln+1(y), tln+1(y)⊕tln+1(x)))

An easy calculation shows, that β satis�es the requirements of De�nition
3.5.1.
Note that, in contrast to the bisimulation proof principle presented in [9],
induction along the terminal sequence does not require the de�nition of a
bisimulation, which � at least in some cases � requires some ingenuity in
itself.

3.6 Notes

A more detailed account of the terminal sequence can be found in
Lemma 3.1.7 appears in [62] for the case of accessible functors on locally
presentable categories, as well as in [3]; our proof is more elementary and
tailored towards the set-theoretic case. [62].
The idea behind the categorical formulation of primitive (Co)recursion is (to
my knowledge) due to [18] and has been treated in [59, 58] and, in a much
more abstract setting, in [9].
One can show, that bisimilarity implies behavioural equivalence if the signa-
ture functor preserves weak pullbacks (the standing assumption in Rutten
[53]. An example, where behavioural equivalence is the more appropriate
notion of equivalence can be found in [32].

70

3.7 Exercise

Exercise 3.7.1. Prove Proposition 3.1.4.
Exercise 3.7.2. Prove Proposition 3.2.3.
Exercise 3.7.3. Give a concrete description of pullbacks in the category of
sets.
Exercise 3.7.4. Give a precise formulation and a proof of the following
statement: Pullbacks over a terminal object are products.
Exercise 3.7.5. Show that (N, [0, s]) where 0 : 1 → N maps 0 ∈ 1 to 0 ∈ N
and s : N → N is the successor function, is an initial algebra for TX = 1+X
in the category of sets.
Exercise 3.7.6. Let TX = 1+A×X. Show that the set A∗, which contains
all �nite sequences of elements of A, has the structure of an initial T -algebra.
(In functional programming, A∗ is the set of lists over the type A.)
Exercise 3.7.7. Use iteration to de�ne the length function A∗ → A by
iteration using that A∗ is an initial algebra (see Exercise 3.7.6).
Exercise 3.7.8. Use primitive recursion to de�ne the predecessor function
p : N → N, which is de�ned by p(n) =

{
0 n = 0
n− 1 o/w .

Exercise 3.7.9. Use primitive corecursion to de�ne pre�xing p : Aω ×A→
A, for in�nite streams, where p((a0, a1, a2, . . .), a) = (a, a0, a1, a2, . . .).

71

72

Chapter 4

Modal Logics for Coalgebras

4.1 Coalgebraic Logic

This section presents a very general logic, which can be used to specify
properties of a large class of coalgebras. The basic idea behind the logic is,
that one uses functor application to speak about successor states.
Since coalgebraic logic replaces modalities with functor application, we have
to provide a suitable semantical handle to interpret formulas, which arise in
this way. This is accomplished by extending the underlying endofunctor to
relations in the following way:
Notation 4.1.1. If T : Set → Set is an endofunctor and R ⊆ A × B is
a relation, let T̂ (R) = {(Tπ1(r), Tπ2(r)) | r ∈ R}. For sets A, we let
T̂A = TA.
It has �rst been noted by Carboni, Kelly and Wood [12] that this de�nes
an endofunctor T̂ on the category Rel of sets and relations (i.e. a relator)
i� T preserves weak pullbacks, that is, ordinary pullbacks, but without the
uniqueness requirement. In the sequel, we overload the symbol ◦ to denote
relational as well as functional composition: If R ⊆ A×B and S ⊆ B × C,
we put S ◦ R = {(a, c) | ∃b ∈ B.(a, b) ∈ R, (b, c) ∈ S}. Note that relational
composition is written in the same order as function composition.
Proposition 4.1.2. The functor T̂ preserves weak pullbacks if and only if

T̂ (S ◦R) = T̂ (S) ◦ T̂ (R) for all composable relations R,S.

The (easy) proof is left as an exercise.
The extension of endofunctors to relations is an integral part of Moss' de�-
nition of the semantics of coalgebraic logic, which is given in terms of initial
algebras. The following theorem, the proof of which can be found in [2],
establishes the existence of initial algebras:

73

Theorem 4.1.3. Suppose T is κ-accessible. Then there exists an initial

T -algebra.

De�nition 4.1.4. Suppose T is κ-accessible and put L = Pκ + T . The
language L(T) of coalgebraic logic associated to T is the carrier of the initial
L-algebra (L, ι).
If (C, γ) ∈ CoAlg(T), put d : PκP(C) → P(C), d(x) = ∩x and e : TP(C) →
P(C), e(x) = {c ∈ C | (γ(c), t) ∈ T̂ (εC)}, where εC ⊆ C × P(C) is the
membership relation.
The semantics [[·]](C,γ) : L(T) → P(C) of L with respect to (C, γ) is the
unique function with [d, e] ◦ [[·]](C,γ) = T [[·]](C,γ) ◦ ι. If c ∈ [[φ]](C,γ), we also
write c |=(C,γ) φ; we drop the subscript (C, γ) whenever there is no danger
of confusion.
In the above de�nition, the auxiliary function d is used to interpret con-
junctions, and e takes care of the modalities. Note that the initial L-
algebra (L, ι) always exists since L is κ-accessible, see Proposition 3.1.4.
If in1 : PκL → Pκ + TL and in2 : TL → PκL + TL denote the coproduct
injections, we write ∧

= ι ◦ in1 and ∇ = ι ◦ in2. The language of coalgebraic
logic can thus be described as the least set such that

Φ ⊆ L(T), card(Φ) < κ =⇒
∧

Φ ∈ L(T)

φ ∈ TL(T) =⇒ ∇φ ∈ L(T).

If (C, γ) ∈ CoAlg(T), we then obtain
c |=

∧
Φ i� c |= φ for all φ ∈ Φ

c |= ∇φ i� (γ(c), φ) ∈ T̂ (|=)

for subsets Φ ⊆ L of cardinality less than κ and φ ∈ TL.
Note L contains tt =

∧
∅ and is closed under conjunctions of size < κ. We

just give a brief example of the nature of coalgebraic logic:
Example 4.1.5. Let TX = L ×X, where L is a set of labels. As already
mentioned, tt ∈ L and obviously [[tt]] = C for all (C, γ) ∈ CoAlg(T). If
l ∈ L, we have (l, tt) ∈ TL, hence ∇(l, tt) ∈ L. Unravelling the de�nitions,
one obtains c |= ∇(l, tt) if π1 ◦ γ(c) = l. In the same manner, one has
∇(m,∇(l, tt)) ∈ L form ∈ L with c |= ∇(m,∇(l, tt)) i� the stream associated
to c (cf. Section 1.1.2) begins with (m, l).
The previous example suggests, that we can use induction along the termi-
nal sequence in order to establish an expressiveness theorem for coalgebraic
logic: We use functor application to construct formulas for successor ordi-
nals and conjunctions for limit ordinals. Before doing so, we establish a

74

technical lemma and show that L(T) is adequate, i.e. does not distinguish
behaviourally equivalent points. In the following, G(f) denotes the graph of
a function.
Lemma 4.1.6. G(Tf) = T̂ (Gf), whenever f is a function.

The proof is an easy calculation, and therefore omitted. This puts us into
the position to tackle adequacy.
Theorem 4.1.7. Suppose T is κ-accessible and preserves weak pullbacks.

Then [[φ]](C,γ) = f−1([[φ]](D,δ)) for all f : (C, γ) → (D, δ) ∈ CoAlg(T) and all

φ ∈ L(T).

Proof. Suppose [d, e] : PκPC +TPC → P(C) and [d′, e′] : PκPD+TPC →
P(D) are given as in De�nition 4.1.4.
We prove that f−1 ◦e′ = e◦T (f−1). Since f−1 ◦d′ = d◦L(f−1), this su�ces
to show that

PκL+ TL

ι

��

L[[·]](D,δ) // PκPD + TPD

[d′,e′]
��

L(f−1) // PκP(C) + TPC

[d,e]

��
L

[[·]](D,δ)

// P(D)
f−1

// P(C)

commutes, which establishes the claim.
In order to see that f−1 ◦e′ = e◦T (f−1) suppose t ∈ TPD and c ∈ C. Then
c ∈ f−1 ◦ e′(t) i� (δ ◦ f(c), t) ∈ T̂ (εD)

i� (Tf ◦ γ(c), t) ∈ T̂ (εD) (since f ∈ CoAlg(T))
i� (γ(c), t) ∈ T̂ (εD) ◦ T̂ (Gf) (by Lemma 4.1.6)
i� (γ(c), t) ∈ T̂ (Gf−1) ◦ T̂ (εC) (by Proposition 4.1.2)
i� (γ(c), T (f−1)(t)) ∈ T̂ (εC) (by Lemma 4.1.6)
i� c ∈ e ◦ T (f−1)(t),

where εC ⊆ C×P(C) and εD ⊆ D×P(D) denote the respective membership
relations.
We obtain adequacy as a corollary:
Corollary 4.1.8. Let (C, γ), (D, δ) ∈ CoAlg(T). Then

c |=(C,γ) φ i� d |=(D,δ) φ

whenever (c, d) ∈ C ×D are behaviourally equivalent.

75

Proof. Suppose f : (C, γ) → (E, ε) and g : (D, δ) → (E, ε) ∈ CoAlg(T)
with f(c) = g(d). Then c |=(C,γ) φ i� f(c) |=(E,ε) φ i� g(d) |=(E,ε) φ i�
d |=(D,δ) φ.

We now come to the main theorem in the present section: The proof of
expressiveness of coalgebraic modal logic using induction along the terminal
sequence.
Theorem 4.1.9. Suppose T is κ-accessible and preserves weak pullbacks, let

(C, γ), (D, δ) ∈ CoAlg(T). Then

c |=(C,γ) φ i� d |=(D,δ) φ

implies that (c, d) ∈ C ×D are behaviourally equivalent.

Proof. Since T is accessible, there is a �nal object (Z, ζ) ∈ CoAlg(T). We
show that there exists a formula φα

z ∈ L with [[φα
z]](Z,ζ) = ζ−1

α ({z}) for all
α < κ and all z ∈ Tα1. The result then follows from Theorem 3.1.11.
If α is a limit ordinal, let φα

z =
∧
{φβ

pα
β (z) | β < α}, where pα

β : Tα1 → T β1
are the connecting morphisms of the terminal sequence as de�ned in Section
3.1.3.
Now suppose α = β + 1 is a successor ordinal. By induction hypothesis,
there is a map f : T β1 → L with the property that [[f(z)]](Z,ζ) = ζ−1

β ({z})
for all z ∈ T β1. Given an element z ∈ Tα1 = TT β1, let φα

z = ∇(Tf(z)). An
easy calculation shows, that φα

z has the required property.

4.2 Coalgebraic Modal Logic

This section introduces the framework of coalgebraic modal logic, which is an
extension of multimodal logic, interpreted over coalgebras. Compared with
Moss' approach (discussed in the previous section), coalgebraic modal logic
can still be used for a large class of endofunctors, but has the advantage of
a standard (multimodal) language. This is achieved through expressing the
passage from a set X to TX by means of predicate liftings, instead of functor
application. The present section introduces the framework of coalgebraic
modal logic and shows its adequacy; the following section establishes an
expressiveness result similar to Theorem 4.1.9 of the previous section.
We begin by introducing predicate liftings. This concept is at the heart
of coalgebraic modal logic in that predicate liftings provide the semantical
structure needed to interpret modal operators on arbitrary coalgebras.

76

De�nition 4.2.1. A predicate lifting λ for T is a collection of order preserv-
ing maps λ(X) : P(X) → P(TX), where X ranges over the class of sets,
such that

λ(X) ◦ f−1 = (Tf)−1 ◦ λ(Y)

for all functions f : X → Y .

That is, predicate liftings are order preserving natural transformations, (see
[36]) which lift predicates (subsets) x ⊆ X on a setX to predicates λ(X)(x) ⊆
TX.
We illustrate the concept of predicate liftings by showing that they generalise
the interpretation of the �-operator from Kripke models (see eg. [10, 19])
to coalgebras of arbitrary signature functors.
Example 4.2.2. Suppose TX = P(X)×P(A) as in Section 1.1.5. Consider
the operation λ(C) : P(C) → P(TC) de�ned by

λ(C)(c) = {(a, c′) ∈ TC | c′ ⊆ c}.

An easy calculation shows, that this de�nes a predicate lifting λ. Now con-
sider a T -coalgebra (C, γ) and a subset c ⊆ C, which we think of as the
denotation of a modal formula φ. Then

γ−1 ◦ λ(C)(c) = {c ∈ C | π1 ◦ γ(c) ∈ c}

(where π1 : P(C) × P(A) → P(C) denotes �rst projection) corresponds
to the interpretation of the modal formula �φ under the correspondence
outlined in Section 1.1.5.

The de�nition of λ(C) given in the last example can be rewritten (using the
�rst projection π1 : TC → P(C)) as λ(C)(c) = {t ∈ TC | π1(t) ⊆ c}, and the
naturality of λ follows immediately from the naturality of π1. Replacing π1

by an arbitrary natural transformation, we obtain a construction principle
for predicate liftings:
Proposition 4.2.3. Suppose µ : T → P is a natural transformation. Then

the operation λ(C) : P(C) → P(TC), given by

λ(C)(c) = {c ∈ TC | µ(C)(c) ⊆ c}

de�nes a predicate lifting λ for T .

Proof. Let f : C → D. We have to show that λ(C) ◦ f−1 = (Tf)−1 ◦ λ(D),
given that µ is natural, ie. P(f) ◦ µ(C) = µ(D) ◦ Tf . For subsets d ⊆ D,

77

this follows from calculating
λ(C) ◦ f−1(d) = {c ∈ TC | µ(C)(c) ⊆ f−1(d)}

= {c ∈ TC | P(f) ◦ µ(C)(c) ⊆ d}
= {c ∈ TC | µ(D) ◦ Tf(c) ⊆ d}
= (Tf)−1 ◦ λ(D)(d)

which establishes the claim.
Continuing our running example, we now show that predicate liftings can
also be used to interpret atomic propositions of Kripke models.
Example 4.2.4. Again, let TX = P(X) × P(A). For some �xed a ∈ A,
consider the (constant) operation λa(C) : P(C) → P(TC), given by

λa(C)(c) = {(c′, a) ∈ TC | a ∈ a}.

Given an arbitrary subset c ⊆ C, we obtain
γ−1 ◦ λa(C)(c) = {c ∈ C | a ∈ π2 ◦ γ(c)},

that is, the set of worlds satisfying proposition a under the correspondence
outlined in Section 1.1.5.
Again, there is a more general principle underlying the construction of the
(constant) lifting of the last example. In the following, we write 1 = {0}
and, if X is a set, !X : X → 1 for the uniquely de�ned surjection.
Proposition 4.2.5. Suppose a ⊆ T1. Then the operation λ(C) : P(C) →
P(TC), given by

λ(C)(c) = {c ∈ TC | (T !C)(c) ∈ a}

de�nes a predicate lifting λ for T .

Proof. Note that λ(C)(c) = (T !C)−1(a), where !C : C → 1 is the unique
morphism. Given f : C → D, we have to show that λ(C) ◦ f−1 = (Tf)−1 ◦
λ(D). But this is immediate, since

(Tf)−1 ◦ λ(D)(d) = (Tf)−1 ◦ (T !D)−1(a) = (T !C)−1(a) = λ(C)(f−1(d))

for all subsets d ⊆ D, since the value of λ(C)(·) is independent of its argu-
ment.
The following example shows, how Proposition 4.2.3 and Proposition 4.2.5
can be used to construct predicate liftings, which make assertions about
deterministic automata.

78

Example 4.2.6. Suppose TX = (X × O)I , where I and O are sets. We
have demonstrated in Section 1.1.3 that T -coalgebras are deterministic Mealy
automata with input set I, producing elements of O as outputs.
Given an input i ∈ I, the natural transformation ρ : T → P, de�ned by
ρ(C)(f) = {π1(f(i))} for f ∈ (C×O)I = TC, gives rise to a predicate lifting
λi by Proposition 4.2.3. Intuitively, λi allows us to formulate properties
about the successor state after consuming input i ∈ I.
If (i, o) ∈ I × O, then the subset {f ∈ (1× O)I | π2(f(i)) = o} gives rise to
a lifting µ(i,o) by Proposition 4.2.5. The lifting µ(i,o) can be used to assert
that the current state is such that processing of input i yields output o.
In classical modal logic, one often de�nes the operator ♦ by putting ♦φ =
¬�¬φ. We conclude this section by showing that this can already be accom-
plished on the level of predicate liftings.
Proposition 4.2.7. Suppose λ is a predicate lifting for T . Then the opera-

tion ¬λ¬(C) : P(C) → P(TC), de�ned by

¬λ¬(C)(c) = TC \ λ(C)(C \ c)

is a predicate lifting.

Proof. Because negation preserves inverse images.

For the remainder of this exposition Λ denotes a set of predicate liftings.
Furthermore, we denote the extension of Λ by liftings of the form ¬λ¬ by
Λ. That is, we put

Λ = Λ ∪ {¬λ¬ | λ ∈ Λ}.

Since predicate liftings can be used to interpret both modalities and atomic
propositions we are lead to study propositional logic, enriched with predicate
lifting operators, as a logic for coalgebras.
Since the expressiveness and de�nability results require in�nitary logics in
the general case, the de�nition is parametric in a cardinal number κ. Note
that atomic propositions also arise through predicate liftings (Example 4.2.4),
hence we do not need to include atomic propositions in the de�nition.
De�nition 4.2.8. Suppose κ is a cardinal number. The language Lκ(Λ)
associated with Λ is the least set with grammar

φ ::=
∧

Φ | ¬φ | [λ]φ (Φ ⊆ Lκ(Λ) with card(Φ) < κ and λ ∈ Λ)

Given (C, γ) ∈ CoAlg(T), the semantics [[φ]](C,γ) ⊆ C is given inductively by
the clauses

79

• [[
∧

Φ]](C,γ) =
⋂

φ∈Φ[[φ]](C,γ)

• [[¬φ]](C,γ) = C \ [[φ]](C,γ), and
• [[[λ]φ]](C,γ) = γ−1 ◦ λ(C)([[φ]](C,γ)).

Note that Lκ(Λ) contains the formula tt =
∧
∅ (with [[tt]](C,γ) = C) and that

Lκ(Λ) is �nitary if κ = ω. If we want to emphasise that a formula φ ∈ Lκ(Λ)
holds at a speci�c state c ∈ C of a coalgebra (C, γ), we write c |=γ φ for
c ∈ [[φ]](C,γ).
Given syntax and semantics of coalgebraic modal logic, we now begin the
study of the relationship between logical and behavioural equivalence: As
with coalgebraic logic (Theorem 4.1.8), we conclude invariance under be-
havioural equivalence from the fact that the interpretation of formulas is
stable under coalgebra morphisms.
Theorem 4.2.9. If f : (C, γ) → (D, δ) ∈ CoAlg(T), then

[[φ]](C,γ) = f−1([[φ]](D,δ))

for all φ ∈ Lκ(Λ).

Proof. We proceed by induction on the structure of φ. For conjunctions
and negations, the claim is evident. So suppose φ ∈ Lκ(Λ) and [[φ]](C,γ) =
f−1([[φ]](D,δ)). Naturality of λ allows us to calculate

f−1([[[λ]φ]](D,δ)) = (δ ◦ f)−1 ◦ λ(D)([[φ]](D,δ))

= (Tf ◦ γ)−1 ◦ λ(D)([[φ]](D,δ))

= γ−1 ◦ λ(C) ◦ f−1([[φ]](D,δ))

= [[[λ]φ]](C,γ),

establishing the claim.
The preceding lemma allows us to prove the invariance of coalgebraic modal
logic under behavioural equivalence as in the case of coalgebraic logic.
Corollary 4.2.10. Let (C, γ), (D, δ) ∈ CoAlg(T) and φ ∈ Lκ(Λ). Then

c |=(C,γ) φ i� d |=(D,δ) φ

whenever (c, d) ∈ C ×D are behaviourally equivalent.

Proof. As in the proof of Corollary 4.1.8.
The preceding theorem states, that behavioural equivalence implies logical
equivalence. The remainder of this paper is concerned with conditions on Λ
that also ensure the converse.

80

4.3 Expressivity of Coalgebraic Modal Logic

While behaviourally equivalent states always have the same theory, the con-
verse is not necessarily true (consider for example the logic given by the
empty set of predicate liftings). Logics, for which the converse of Corollary
4.2.10 holds, are called expressive.
This section introduces separation, a condition on sets of predicate liftings,
and establishes the promised characterisation of behavioural equivalence in
logical terms.
The basic idea behind separation is the possibility of distinguishing individ-
ual points of TX by means of lifted subsets of X. This is formalised in the
following de�nition.
De�nition 4.3.1 (Separation). (i) Suppose C is a set and C ⊆ P(C) is

a system of subsets of C. We call C separating, if the map s : C → P(C),
s(c) = {c ∈ C | c ∈ c}, is monic.

(ii) A set Λ of predicate liftings for T is called separating, if, for all sets C,
the set {λ(C)(c) | λ ∈ Λ, c ⊆ C} is a separating set of subsets of TC.

In a separating system of subsets, the system contains enough information
to distinguish the individual elements of the underlying set. The intuition
behind a separating set of predicate liftings is that elements of TC can be
distinguished by means of the subsets λ(C)(c) obtained by applying the
liftings. Many sets of predicate liftings are indeed separating, notably the
predicate liftings giving rise to the interpretation of modalities and atoms in
(standard) modal logic.
Example 4.3.2. Suppose TX = P(X) × P(A) as in Section 1.1.5 and
consider

Λ = {λ} ∪ {λa | a ∈ A},

where λ and the λas are given as in Example 4.2.2 and Example 4.2.4,
respectively. We show that Λ is separating. Fix some set C and let S =
{µ(C)(c) | µ ∈ Λ and c ⊆ C}. We establish that s : TC → P(S), given by
s(c) = {s ∈ S | c ∈ s} is injective. Note that by de�nition of s, we have
µ(C)(c) ∈ s(c) i� c ∈ µ(C)(c), for all c ∈ C, c ⊆ C and µ ∈ Λ.
So suppose s(c0, a0) = s(c1, a1). Then (c0, a0) ∈ λ(C)(c0), hence λ(C)(c0) ∈
s(c0, a0) = s(c1, a1). So (c1, a1) ∈ λ(C)(c0), that is, c1 ⊆ c0 by de�nition of λ.
Now assume a ∈ a1. Then (c1, a1) ∈ λa(C)(C), thus λa(C)(C) ∈ s(c1, a1) =
s(c0, a0). Therefore (c0, a0) ∈ λa(C)(C), showing a ∈ a0 and, since a was
arbitrary, a1 ⊆ a0. We conclude (c0, a0) = (c1, a1) by symmetry.

81

We now show that, given a separating set of predicate liftings, every singleton
set {x}, for x ∈ TX, arises as the intersection of lifted subsets of X. In order
to obtain this representation we have to use both liftings λ ∈ Λ and liftings
of the form ¬λ¬, as introduced in Proposition 4.2.7. Recall the notation
Λ = Λ∪ {¬λ¬ | λ ∈ Λ} introduced in Section 4.2. Furthermore, if A is a set
and a ∈ A, we denote the lattice of supersets of {a} by a � = {a ⊆ A | a ∈ a}.
Lemma 4.3.3. Suppose Λ is separating and X is a set. Then⋂

{λ(X)(x) | λ ∈ Λ and x ∈ λ(X)−1(x �)} = {x}

for all x ∈ TX.

Proof. Fix x ∈ TX and let LHS =
⋂
{λ(X)(x) | λ ∈ Λ and x ∈ λ(X)−1(x �)}.

If λ is a predicate lifting, then x ∈ λ(X)−1(x �) i� x ∈ λ(X)(x), therefore
{x} ⊆ LHS.
In order to see that LHS ⊆ {x}, consider the assignmentm(y) =

⋃
λ∈Λ{λ(X)(x) |

x ∈ λ(X)−1(y �)}. Since Λ is separating, m is monic and it su�ces to show
that m(x) = m(y) for all y ∈ LHS. This is equivalent to

x ∈ λ(X)(x) i� y ∈ λ(X)(x)

for all y ∈ LHS, λ ∈ Λ and x ⊆ X.
First suppose that x ∈ λ(X)(x) for some λ ∈ Λ and some x ⊆ X. Since
y ∈ LHS, clearly y ∈ λ(X)(x). Conversely, if x /∈ λ(X)(x), we have x ∈
¬λ¬(X \ x), hence y ∈ ¬λ¬(X \ x), which amounts to y /∈ λ(X)(x).

This lemma provides a �rst handle for isolating a single point x ∈ TX.
However, we have to consider the liftings of sets whose cardinality is not
bounded above (amounting to disjunctions of unbounded cardinality on the
logical side). We can do better if T is κ-accessible:
Lemma 4.3.4. Suppose T is κ-accessible, X is a set and x ∈ TX. Then

there exists x0(x) ⊆ X with card(x0(x)) < κ such that

x ∈ λ(X)(x) i� x ∈ λ(X)(x ∩ x0(x))

for all x ⊆ X and all predicate liftings λ for T .

Proof. Since T is κ-accessible, there exists a subset x0 = x0(x) ⊆ X with
card(x0) < κ such that x = (Ti)(x0) for some x0 ∈ x0, where i : x0 → X
denotes the inclusion.

82

Since predicate liftings preserve order by de�nition, we have x ∈ λ(X)(x)
whenever x ∈ λ(X)(x ∩ x0). For the other implication, suppose that x ∈
λ(X)(x) for some x ⊆ X and consider the diagram

P(X)
λ(X) //

i−1

��

P(TX)

(Ti)−1

��
P(x0)

λ(x0)
// P(T x0)

which commutes by the naturality of λ. We obtain
(Ti)−1(λ(X)(x ∩ x0)) = λ(x0) ◦ i−1(x ∩ x0)

= λ(x0) ◦ i−1(x)

= (Ti)−1(λ(X)(x)).

Since x = (Ti)(x0) ∈ λ(X)(x), we have x0 ∈ (Ti)−1(λ(X)(x)) = (Ti)−1(λ(X)(x∩
x0)), hence x = (Ti)(x0) ∈ λ(X)(x ∩ x0).

Combining the last two lemmas allows us to isolate single points x ∈ TX by
liftings of subsets x ⊆ X, which are of cardinality less than κ. This is the
content of the following corollary, which immediately follows from the fact
that predicate liftings preserve order.
Corollary 4.3.5. Suppose T is κ-accessible, Λ is separating and X is a set.

Then ⋂
{λ(X)(x) | λ ∈ Λ and x ∈ λ(X)−1(t �), x ⊆ x0(x)} = {x}

for x ∈ TX and x0(x) as in Lemma 4.3.4.

The next lemma transfers the preceding result to a logical setting. We show
that the logics induced by a separating set of predicate liftings can distinguish
distinct elements z0, z1 ∈ Tα1, for α less than the accessibility degree of T .
As in Theorem 3.1.11, (Z, ζ) is the �nal T -coalgebra.
Lemma 4.3.6. Suppose T is κ-accessible and Λ is separating. Then there

exists a cardinal σ such that for all α < κ and all z ∈ Zα, there is a formula

φα
z ∈ Lσ(Λ) with [[φα

z]](Z,ζ) = ζ−1
α ({z}).

Proof. Choose σ such that σ > card(Λ) and σ > 2α for all α < κ.
We de�ne φα

z by trans�nite induction. If α is a limit ordinal, let φα
z =∧

β<α φ
β
pα

β (z), where pα
β : Zα → Zβ is the connecting morphism of the terminal

83

sequence. We obtain [[φα
z]](Z,ζ) = ζ−1

α ({z}) using the fact that (Zα, (pα
β)β<α)

is a limiting cone.
Now suppose α = β + 1 is a successor ordinal. By Lemma 4.3.4 there exists
a subset z0 = z0(z) ⊆ Zβ with card(z0) < κ such that z ∈ λ(Zβ)(z) i�
z ∈ λ(Zβ)(z ∩ z0) for all z ⊆ Zβ and all λ ∈ Λ.
We abbreviate φβ

z =
∨

z∈z φ
β
z for z ⊆ Zβ and let φα

z = φp ∧ φn where

φp =
∧
λ∈Λ

∧
{[λ]φβ

z | z ⊆ z0 and z ∈ λ(Zβ)−1(z �)}

and
φn =

∧
λ∈Λ

∧
{¬[λ]¬φβ

z | z ⊆ z0 and z ∈ (¬λ¬)(Zβ)−1(z �)}.

Corollary 4.3.5 and the naturality of predicate liftings ensure that [[φα
z]](Z,ζ) =

ζ−1
α ({z}).

The main theorem is now easy:
Theorem 4.3.7. Suppose T is accessible and Λ is separating. Then there

exists a cardinal σ such that, for (C, γ), (D, δ) ∈ CoAlg(T),

c |=(C,γ) φ i� d |=(D,δ) φ

for all φ ∈ Lσ(Λ) implies that (c, d) ∈ C ×D are behaviourally equivalent.

Proof. Suppose that T is κ-accessible and let σ be given as in the previous
Lemma. Denote the �nal T -coalgebra by (Z, ζ) and the logical theory of
z ∈ Z by Th(z) = {φ ∈ Lσ(Λ) | c |=ζ φ}. By Theorem 3.1.11 it su�ces to
show that ζα(z0) = ζα(z1) for all α < κ, if z0, z1 ∈ Z with Th(z0) = Th(z1).
Fix some ordinal α < κ and consider the formula φ = φα

ζα(z0) as de�ned
in the last lemma. Then φ ∈ Th(z0) = Th(z1). That is, z1 ∈ [[φ]](Z,ζ) =
ζ−1
α ({ζα(z0)}) by construction. But this is clearly equivalent to ζα(z0) =
ζα(z1), which is what we had to show.

The preceding theorem does not give an upper bound for the size of con-
junctions needed to obtain an expressive logic. If we extract the bound from
Lemma 4.3.6, we see that we need a cardinal which is larger than 2α for
every α which is less than the accessibility degree of T . Hence we obtain the
following corollary for ω-accessible endofunctors:
Corollary 4.3.8. Suppose T is ω-accessible, Λ is separating and �nite. Then

Lω(Λ) is expressive.

84

If T is κ-accessible and card(Λ) < κ we do not in general obtain that Lκ(Λ)
is expressive (unless κ is inaccessible). This can however be established if
the predicate liftings under consideration preserve intersections:
De�nition 4.3.9. We say that Λ is intersection preserving, if

λ(X)(
⋂

X) =
⋂
{λ(X)(x) | x ∈ X}

for all λ ∈ Λ, whenever X is a set and X ⊆ P(X).

This property is present in many examples. In particular, predicate liftings
constructed via Proposition 4.2.3 and 4.2.5 have this property. Assuming
the preservation of intersections, we have:
Lemma 4.3.10. Suppose T is κ-accessible and Λ is separating, intersection-

preserving and card(Λ) < κ. Then, for all α < κ and all z ∈ Tα1, there exists
a formula φα

z ∈ Lκ(Λ) with [[φα
z]](Z,ζ) = ζ−1

α ({z}).

Proof. We use the same notation as in the proof of Lemma 4.3.6 and treat
the case of limit ordinals in the same way.
For successor ordinals α = β+1, we put φα

z = φp∧φn, changing the de�nition
of φp and φn to

φp =
∧
λ∈Λ

[λ]φβ
zλ

where zλ =
⋂
{z ⊆ z0 | z ∈ λ(Zβ)−1(z �)}, and

φn =
∧
λ∈Λ

∧
{¬[λ]¬φβ

z′ | z
′ ∈ z0 and {z′} ∈ (¬λ¬)(Zβ)−1(z �)}

One then applies the preservation of intersections to obtain [[φα
z]](Z,ζ) =

ζ−1
α ({z}).

For intersection preserving sets of predicate liftings, we thus obtain κ as an
upper bound for the size of the conjunctions and disjunctions. This su�ces
to obtain an expressive logic for κ-accessible endofunctors:
Theorem 4.3.11. Suppose T is κ-accessible, Λ is separating and intersec-

tion preserving. Then, for (C, γ), (D, δ) ∈ CoAlg(T),

c |=(C,γ) φ i� d |=(D,δ) φ

for all φ ∈ L(Λ) implies that (c, d) ∈ C ×D are behaviourally equivalent.

Proof. Analogous to the proof of Theorem 4.3.7, but using Lemma 4.3.10 in
place of Lemma 4.3.6.

85

We conclude the section with some examples illustrating the expressiveness
results.
Example 4.3.12.

(i) Let TX = Pω(L × X). We have argued in Example 3.1.12 that a
T -coalgebra (C, γ) is a �nitely branching labelled transition system.
Consider, for l ∈ L, the natural transformation µl(C) : Pω(L × C) →
P(C) given by µl(C) = i ◦ Pω(π2), where i : Pω(C) → P(C) is the
inclusion and π2 : L× C → C is the projection. By Proposition 4.2.3,
every µl gives rise to a predicate lifting λl. A calculation similar to
the one in Example 4.3.2 shows, that the set Λ = {λl | l ∈ L} thus
obtained is separating.
Given a T -coalgebra (C, γ), we put c l−→ if (l, c′) ∈ γ(c). Under this
correspondence, we have c |= [λl]φ i� ∀c′.c l−→ c′ =⇒ c′ |= φ for c ∈ C
and φ ∈ Lω(Λ). Corollary 4.3.8 then re-proves the characterisation
result by Hennessy and Milner [24] in the coalgebraic framework.

(ii) Suppose TX = Pκ(X)×P(A) for some set A (of atomic propositions)
with card(A) < κ. Consider the predicate lifting λ and, for a ∈ A, the
liftings λa, as described in Example 4.2.2 and Example 4.2.4.
If Λ = {λ} ∪ {λa | a ∈ A}, then Λ is intersection-preserving and, by
Theorem 4.3.11, the logical equivalence induced by Lκ(Λ) coincides
with behavioural equivalence. This amounts to saying that, in Kripke
models with branching degree less than κ, modal logic with conjunc-
tions of size less than κ characterises behavioural equivalence.
If κ > ω, one can use an argument similar to that used in Exam-
ple 3.1.12 to show that the equivalence induced Lω(Λ) is weaker than
behavioural equivalence.

(iii) Suppose I and O are �nite sets and TX = (X ×O)I . We have shown
in Example 1.1.3 that T -coalgebras are Mealy Machines. In Example
4.2.6 we have introduced the set Λ = {λi | i ∈ I} ∪ {µ(i,o) | (i, o) ∈
I ×O} of predicate liftings for T . It is easy to see that Λ is separating
and intersection preserving. Hence Lω(Λ) characterises states of input
output automata up to behavioural equivalence.

4.4 Notes

In Moss' original paper [39], the language of coalgebraic logic is a proper
class of formulas and was obtained through an initial algebra construction,

86

requiring that the endofunctor under consideration can be continously ex-
tended from sets to classes. We re-phrase coalgebraic logic in terms of the
more standard notion of accessibility; this encompasses Moss' original set-
ting, which can be recovered when considering κ-accessible functors, where
κ is an inaccessible cardinal; our formulation has the advantage of being
more �ne grained, that is, it gives more precise bounds for the cardinality of
conjunctions and disjunctions needed to obtain expressivity.
The extension of functors to relators was �rst discovered in [12]; see also [52]
and [6] for applications of relators in a coalgebraic setting.
Predicate liftings were �rst used by Hermida and Jacobs [28] in the context
of (co-)induction principles and later by Jacobs [27] in conjunction with
modal logic. There, as well as in the related paper [48], predicate liftings are
syntactically de�ned entities, and naturality, which we take as our de�ning
property, is derived.
In contrast to the approaches presented in [27, 33, 48, 49], the framework
of coalgebraic modal logic does not rely on the syntactic analysis of the
signature functor and can be instantiated for functors whose accessibility
degree is > ω.
We have not treated multi-sorted logics in the present paper. The results
extend smoothly to the multi-sorted case, that is, to coalgebras for functors
T : Setn → Setn.
The material on coalgebraic logic and coalgebraic modal logic is taken from
[44]; a preliminary version of the expressivity results has appeared as [42].

4.5 exercises

Exercise 4.5.1. Prove Proposition 4.1.2.
Exercise 4.5.2. Prove Lemma 4.1.6.
Exercise 4.5.3. Consider TX = 1 +A×X. Think of T -algebras as stream
automata, which have the additional possibility of termination. Give exam-
ples of predicate liftings and formulas corresponding to the following state-
ments:
(a) The automaton terminates in the next step, and (b) the automaton does
not terminate and produces the element a ∈ A.
Exercise 4.5.4. For TX = A × X × X, we can think of T -coalgebras as
in�nite binary trees, the nodes of which are labelled with elements a ∈ A.
Give predicate liftings which can be used to express that a formula holds in
the left (resp. right) subtree.

87

Exercise 4.5.5. Extend the predicate liftings constructed in Exercise 4.5.3
and 4.5.4 such that the extended sets of liftings are separating.

88

Chapter 5

Proof Systems For Coalgebraic

Logics

After having discussed logics for expressing properties of systems, we now
focus on proof systems, which allow us to derive properties from one another.
Of course, we only want to derive valid consequences, and therefore begin
with making the notion of consequence precise. an assumption, if it is a valid
consequence (of the assumption).

5.1 Properties of the Consequence Relation

In the context of modal logic, one distinguishes between two di�erent such
relations: If φ and ψ are modal formulas, one calls ψ a global consequence of
φ, if

(∀c ∈ C. c |=γ φ) =⇒ (∀c ∈ C. c |=γ ψ)

for all (C, γ) ∈ CoAlg(T). That is, the class of models, which globally sat-
isfy ψ is a subclass of the models of ψ. We will be concerned with local
consequence:
De�nition 5.1.1 (Local Consequence). Let φ, ψ ∈ L(Λ). We say that ψ
is a local consequence of φ, if

∀c ∈ C. (c |=γ φ =⇒ c |=γ ψ)

for all (C, γ) ∈ CoAlg(T). If ψ is a local consequence of φ, we write φ |= ψ.

The nature of the local consequence relation allows to prove
Lemma 5.1.2. Let φ, ψ, ρ ∈ L(Λ). Then φ ∧ ψ |= ρ i� φ |= ψ → ρ.

89

The proof is straightforward, and therefore omitted.
Remark 5.1.3. The previous lemma opens two ways of �nding appropriate
proof systems for coalgebraic modal logic. We can either axiomatise the set
of tautologies of the logic or the local consequence relation. We work with
local consequence, since this notion allows us to express directly the fact that
predicate liftings preserve order by means of a logical rule.

We now start analysing the inductive de�nition that gives rise to L(Λ). The
road map is as follows: We consider a set L, which we think of as a set of
formulas (and assume to be closed under propositional connectives), together
with a function d : L→ P(C), which assigns to every formula φ ∈ L the set
of states d(φ) ⊆ C which satisfy φ; note that we just require C to be a set.
To the map d : L→ P(C) we associate a function Lift(d) : Lift(L) → P(TC)
by inductively extending the assignment [λ]φ 7→ λ(C)(d(φ)) to the whole
of Lift(L). Starting with (L0, 1, d0) (where L0 is the set of propositional
formulas over the empty set of atoms, 1 is any one element set and d0 : L0 →
P(1) is the unique mapping), we obtain a sequence of objects (Ln, Tn1, dn) =
Liftn(L0, 1, d0) by repeatedly applying Lift to (L0, 1, d0).
This construction allows us to view L as the strati�cation L =

⋃
n∈ω Ln,

where Ln contains all φ ∈ L with rank(φ) ≤ n. Furthermore, we show how
to reconstruct the semantics [[φ]]γ of φ ∈ Ln with respect to an arbitrary
model (C, γ) from dn(φ). This enables us to reduce local consequence φ |= ψ
to set-theoretic inclusion dn(φ) ⊆ dn(ψ). We begin with the de�nition of Lift
on sets, which we think of as sets of formulas.
De�nition 5.1.4. Suppose L is a set (of formulas). We denote the set of
propositional formulas with the elements of L as atoms by Prop(L). Fur-
thermore, let

Up(L) = {[λ]φ | λ ∈ Λ, φ ∈ L}
Lift(L) = Prop ◦ Up(L)

and L0 = Prop(∅), Ln+1 = Lift(Ln).

Note that an application of Lift to a set of modal formulas with rank ≤ n
produces modal formulas with rank ≤ n + 1, where the rank of a formula
is given inductively by rank(ff) = 0, rank(φ→ ψ) = max{rank(φ), rank(ψ)}
and rank([λ]φ) = 1 + rank(φ). We obtain the whole of L by iteration:
Lemma 5.1.5. Ln = {φ ∈ L | rank(φ) ≤ n}. In particular, L =

⋃
n∈ω Ln.

Proof. By induction on n, one shows that φ ∈ Ln has rank at most n. For
the other inclusion, use induction on the structure of φ ∈ L.

90

Alternatively, one can show that Lift is monotone and characterise L as the
least �xed point of Lift. Either way we obtain an alternative inductive def-
inition of the language L of coalgebraic modal logic. The next step is to
synchronise the (inductive) de�nition of the semantics of L with the de�ni-
tion obtained as the least �xed point of Lift. This is taken care of by
De�nition 5.1.6. Suppose L is a set (of formulas) and C is a set. Given
a (denotation) function d : L → P(C) we denote the extension1 of d to
Prop(L) by Prop(d) : Prop(L) → P(C). We also de�ne functions Up(d) :
Up(L) → P(TC) and Lift(d) : Lift(L) → P(TC) by

Up(d)([λ]φ) = λ(C)(d(φ)) and
Lift(d)(φ) = Prop(Up(d))(φ),

respectively. We denote the function L0 → P(1) given by φ 7→ 1 i� φ is
a tautology (and φ 7→ ∅ otherwise) by d0. Finally, let dn+1 = Lift(dn) :
Ln+1 → P(Tn+11) and write φ |=n ψ if dn(φ) ⊆ dn(ψ) (and φ, ψ ∈ Ln).

We sometimes call dn the n-step denotation function, since it interprets
formulas, which incorporate information about at most n transition steps.
The next theorem shows, that � for formulas of rank ≤ n � the semantic
consequence relation can be reconstructed from the n-step denotations:
Theorem 5.1.7. Suppose φ, ψ ∈ Ln. Then φ |= ψ i� φ |=n ψ.

Note that Theorem 5.1.7 allows us to replace semantical consequence (which
is quanti�ed over all models) by set-theoretic containment. For the proof,
we introduce some auxiliary notation. If f : C → TC is a function, we
inductively de�ne a sequence of mappings (fn)n∈ω by

f0 =!C : C → T 01 = 1

fn+1 =Tfn ◦ f : C → Tn+11,

where !C : C → 1 is the uniquely de�ned surjection. Given the de�nition
of fn, the next lemma establishes a relation between the n-step denotation
dn(φ) and the semantics [[φ]] for formulas φ ∈ L.
Lemma 5.1.8. Suppose φ ∈ Ln and (C, γ) ∈ CoAlg(T). Then [[φ]]γ =
γ−1

n ◦ dn(φ).

Proof. By induction on n using the naturality of predicate liftings.
1This extension is de�ned inductively by Prop(d)(φ) = d(φ) for φ ∈ L, Prop(d)(ff) = ∅

and Prop(d)(φ→ ψ) = (C \ Prop(d)(φ)) ∪ Prop(d)(ψ).

91

We continue by noting that, since T is assumed to be non-trivial, the canoni-
cal map e0 : T1 → 1 is a surjection, and has a right inverse f0 : 1 → T1 with
e0 ◦ f0 = id1. Letting en = Tne0 and fn = Tnf0, we obtain en ◦ fn = idT n1

by the functoriality of T . Note that fn : Tn1 → Tn+11 quali�es as a coal-
gebra structure. We need one little technical lemma before we are ready to
embark on the proof of Theorem 5.1.7.
Lemma 5.1.9. For all k ≤ n: fn

k = T k(!T n−k1). In particular, fn
n = idT n1.

Proof. Fix an arbitrary n ∈ ω and proceed by induction on k. For k = 0 we
have fn

0 =!T n1 = T 0(!T n1). To get from k to k+ 1 assume that the equation
is valid for k (and that k + 1 ≤ n). Unravelling the de�nitions, we obtain
fn

k+1 = T (fn
k)◦fn = T (T k(!T n−k1)◦T k+1fn−k−1) = T k+1(!T n−k1◦fn−k−1) =

T k+1(!T n−(k+1)1), as claimed.

We are now ready for the

Proof of Theorem 5.1.7. Let φ, ψ ∈ Ln. First assume that dn(φ) ⊆ dn(ψ).
If (C, γ) ∈ CoAlg(T) is any T -coalgebra, we obtain [[φ]]γ = γ−1

n ◦ dn(φ) ⊆
γ−1

n ◦ dn(ψ) = [[ψ]]γ by two applications of Lemma 5.1.8 (and the fact that
inverse images preserve inclusion). Hence φ |= ψ. Now assume φ |= ψ.
Taking (C, γ) = (Tn1, fn), we have [[φ]]fn ⊆ [[ψ]]fn by the de�nition of the
semantical consequence relation |=. Since fn

n = idT n1 (which was established
in Lemma 5.1.9), we obtain dn(φ) = (fn

n)−1 ◦ dn(φ) = [[φ]]fn ⊆ [[ψ]]fn =
(fn

n)−1 ◦ dn(ψ) = dn(ψ), again by applying Lemma 5.1.8 twice.

This theorem characterises local consequence in terms of the so-called ter-
minal sequence (Tn1)n∈ω of the underlying endofunctor T . The terminal
sequence (iterated through the class of all ordinal numbers) is frequently
used to construct �nal coalgebras (see [7, 4, 62]). Since we are working with
�nitary logic, there is no need to iterate the construction further than ω.
Using Theorem 5.1.7, we can determine validity φ |= ψ by just looking at
one model: it su�ces to determine the rank of φ and ψ and check, whether
the n-step denotation dn(φ) of φ is a subset of the n-step denotation dn(ψ)
of ψ. This fact will be exploited twice in the sequel. In the next section,
we construct a logical consequence relation ` ⊆ L×L which can be seen to
arise as the union of relations `n ⊆ Ln × Ln. Theorem 5.1.7 then allows us
to prove local soundness and completeness results by induction on n. The
second place where Theorem 5.1.7 will be important is the decidability of
`: if T is �nite, that is, the approximants Tn1 are �nite sets, the problem
dn(φ) ⊆ dn(ψ) is decidable for φ, ψ ∈ Ln.

92

5.2 Proof Systems for Coalgebraic Modal Logic

This section introduces proof systems for coalgebraic modal logic and es-
tablishes soundness and completeness. The results are obtained inductively
by representing the entailment relation ` ⊆ L × L by a union of relations
`n ⊆ Ln × Ln. Throughout this section we �x a set Λ of predicate liftings
for T . As in the preceding section we abbreviate L(Λ) by L. Further-
more, we �x a denumerable set X = {x1, x2, . . . } (of formulas) and a set
Ax ⊆ Lift ◦ Prop(X) × Lift ◦ Prop(X) (of axiom schemes). The role of Ax
is to encode information about the structure of T , i.e. it provides us with
additional information which is needed to obtain a complete axiomatisation
of |=. If φ, ψ ∈ Lift ◦ Prop(X), we write φ`ψ ∈ Ax, instead of (φ, ψ) ∈ Ax.
We illustrate the role of Ax by means of a small example.
Example 5.2.1. In the case of (standard) modal logic, we need axioms to
express distributivity of � over conjunctions. That is, If TX = P(X) ×
P(A) (as in Section 1.1.5) and � denotes the lifting λ in Example 4.2.2, an
axiomatisation of local consequence needs the axiom

�x1 ∧�x2`�(x1 ∧ x2),

formalising that � distributes over conjunctions. This can be accommodated
in the above de�nition of axiom: the expressions x1 ∧ x2, x1 and x2 are
elements of Prop(X), hence both �(x1 ∧ x2) and �x1 ∧�x2 are elements of
Lift ◦ Prop(X). Thus �x1 ∧�x2`�(x1 ∧ x2) is a possible axiom.

Note that axiom schemes are required to be of a rather special form, that is,
they are not allowed to contain nested modal operators. Assuming axioms of
this form, substitution instances with formulas of rank ≤ n have rank ≤ n+1.
This enables us to de�ne n-step consequence relations `n ⊆ Ln×Ln such that
the union of all `n's equals the logical consequence relation. The synchronism
of the construction of L with both the n-step consequence relations `n and
the n-step denotation functions dn will then allow us to use induction on n
to prove soundness and completeness results for coalgebraic modal logic.
Since we do not restrict our attention to a speci�c endofunctor T , we do
not consider a concrete set of axioms that we work with. Instead, we state
what we understand by the term �axiom scheme� (that is, an element of
Lift ◦ Prop(X) × Lift ◦ Prop(X)) and investigate conditions on (sets of) ax-
ioms schemes, which ensure soundness and completeness of the logic arising
through the set Λ of liftings.
An example of the general theory, where we instantiate the theorems with
the case of Kripke models (Section 1.1.5), is given at the end of this section.
We now introduce the logical consequence relation of coalgebraic modal logic.

93

De�nition 5.2.2. We de�ne ` ⊆ L × L to be the least relation which
• is closed under propositional entailment
• is closed under the rule

(op)
φ`ψ

[λ]φ`[λ]ψ
(λ ∈ Λ)

• contains all substitution instances of axioms φ`ψ ∈ Ax.
The relation ` will be the object of study for the remainder of this section. As
in the previous section, we show that ` arises as the union of relations `n ⊆
Ln ×Ln. By exploiting Lemma 5.1.7, we show soundness and completeness
by arguing that, for φ, ψ ∈ Ln, we have φ`ψ i� φ`nψ i� φ |=n ψ i� φ |=
ψ. We begin by introducing the operators used in the de�nition of the
approximating relations `n.
In order to facilitate our presentation, we assume that every relation comes
with its carrier set, i.e. we consider relations as pairs (E,`E) where E is a set
and `E ⊆ E × E. We write ~x = (x0, . . . , xn) and ~α = (α0, . . . , αn) for �nite
sequences of variables (or formulas) and denote the substitution of xi by αi

in a formula φ by φ[~x/~α], where we implicitly assume that both sequences
are of equal length.
De�nition 5.2.3. Suppose E is a set (of formulas) equipped with a rela-
tion `E ⊆ E × E. We denote the least relation on Prop(E), which con-
tains `E and is closed under the rules and axioms of propositional logic by
(Prop(E),`Prop(E)). Furthermore, let

Up(E,`) = (Up(E), {[λ]φ`[λ]ψ | λ ∈ Λ, φ`Eψ}
Ax(E,`) = (Lift(E), {φ[~α/~x]`ψ[~α/~x] | φ(~x)`ψ(~x) ∈ Ax, ~α ∈ ~E}
Lift(E,`) = Prop(Ax(E,`E) ∪ Up(E,`E))

where (E,`E)∪ (F,`F) = (E ∪F,`E ∪`F). By abuse of notation, we write
(Lift(E),`Lift(E)) for Lift(E,`).
Finally, we de�ne (L0,`0) = Prop(∅, ∅) and (Ln+1,`n+1) = Lift(Ln,`n).
We proceed as in the previous section and show that Lift allows us to con-
struct the entailment relation ` ⊆ L × L of coalgebraic modal logic. Note
that Lift �lifts� an (entailment) relation `E ⊆ E × E to the set Lift(E) of
formulas containing one more modality than the formulas in E.
As with the n-step denotations, there is a close relationship between formulas
φ ∈ Ln of rank ≤ n and the entailment relation `n ⊆ Ln × Ln, providing a
syntactic counterpart to Theorem 5.1.7:

94

Lemma 5.2.4. Suppose φ, ψ ∈ Ln. Then φ`ψ i� φ`nψ.

Proof. We use induction on n. For n = 0, the claim holds trivially. For
n > 0, one uses induction on the derivation of φ`nψ. If φ`nψ was derived
by propositional reasoning, the claim follows, since `n is closed under propo-
sitional reasoning. If (op) was used, we have that φ = [λ]φ0, ψ = [λ]ψ0 for
φ0, ψ0 ∈ Ln−1 (otherwise φ, ψ /∈ Ln) with φ0`n−1ψ0 and hence φ`nψ by
induction hypothesis. If φ`ψ is a substitution instance of an axiom, we have
φ`nψ since `n is closed under substitution instances of axioms. Note that, if
φ = σ(φ0, . . . , φk) with σ the right (or left) side of a substitution instance of
an axiom, we can always assume that every φj ∈ Ln−1 if φ ∈ Ln by de�nition
of axioms.
So far, the only restriction on axiom schemes was their syntactic form, which
allowed us to construct the entailment relation of coalgebraic modal logic
as union of all n-step consequence relations. This does not exclude axiom
schemes which are not sound: for example, tt`ff (where tt denotes logical
truth) quali�es as axiom scheme. We now restrict ourselves to admissible
axioms, which guarantees soundness of coalgebraic modal logic.
De�nition 5.2.5. We call an axiom scheme φ`ψ ∈ Ax admissible, if Lift(d)(φ) ⊆
Lift(d)(ψ) for all functions d : X → P(C).
That is, admissibility of axiom schemes means that interpreting every vari-
able x ∈ X as a subset of some set C, the (interpretation of the) left side is
a subset of (the interpretation of) the right hand side.
Example 5.2.6. Consider the signature functor TX = P(X)× P(A) from
Section 1.1.5 along with the set Λ = {λ} ∪ {λa | a ∈ A} of predicate liftings
from Example 4.2.2. The axioms

tt`[λ]tt [λ]φ ∧ [λ]ψ`[λ](φ ∧ ψ) [λa]φ`[λa]ψ

where a ranges over the elements of A, are admissible. Note that the last
axiom expresses that the liftings λa are constant.
Assuming admissibility of axiom schemes, soundness of coalgebraic modal
logic is immediate: We argue that φ`nψ implies that φ |=n ψ and use The-
orem 5.1.7 and Lemma 5.2.4. Since all `n's are preorders and we construct
`n+1 from `n by applying Lift, it is handy to consider the lifting of arbitrary
preorders �rst.
Theorem 5.2.7 (Soundness). Suppose Ax is a set of admissible axioms.

(i) If (E,`E) is a preorder and d : E → P(C) preserves order, then so

does Lift(d) : Lift(E) → P(TC).

95

(ii) For all φ, ψ ∈ L, we have φ |= ψ whenever φ`ψ.

Proof. (i) Suppose (E,`) is a preorder and d : E → P(C) preserves order.
It follows by induction on the judgement φ`Lift(E)ψ that Lift(d) pre-
serves order: The case of axioms holds by assumption, propositional
entailment is sound, and applications of the rule (op) are sound since
predicate liftings preserve order.

(ii) We �rst show that φ`nψ =⇒ φ |=n ψ for all n ∈ ω and all φ, ψ ∈
Ln. For n = 0, the claim follows from the soundness of propositional
reasoning (recall that L0 is the set of propositional formulas over the
empty set of atoms). Now suppose that φ, ψ ∈ Ln+1 with φ`n+1ψ.
By (i), we have that dn+1 = Lift(dn) preserves order, and the claim
follows.
Now suppose that φ`ψ. Since L =

⋃
n∈ω Ln, there exists n ∈ ω such

that φ, ψ ∈ Ln. By Lemma 5.2.4 we have φ`nψ and by the above we
conclude that φ |=n ψ. Soundness follows by Theorem 5.1.7.

Hence the axioms schemes presented in Example 5.2.6 only allow to derive
valid judgements. In category-theoretic terms, admissibility allows us to
consider Lift as an endofunctor on the category of preorders (and order-
preserving functions).
Having dealt with soundness, we now investigate conditions, under which
we also obtain a completeness theorem. The line of reasoning is the same
as in the proof of soundness: We isolate a property (re�exivity) of a set of
axiom schemes, show that � for re�exive sets of axiom schemes � Lift(d) is
order-re�ecting whenever d is, and conclude that φ`nψ, whenever φ |=n ψ.
We start with the de�nition of re�exivity:
De�nition 5.2.8. We say that Ax is re�exive, if ∧

Φ`Lift(E)

∨
Ψ whenever

(E,`E) is a preorder re�ected by a map d : E → P(C) and Φ,Ψ ⊆ Up(E)
are �nite with Lift(d)(

∧
Φ) ⊆ Lift(d)(

∨
Ψ).

Re�exivity of Ax clearly holds in all cases where Lift(d) is order-re�ecting
whenever d re�ects order. As we shall see later, re�exivity is actually equiv-
alent to the fact that Lift(d) re�ects order whenever d does. However, re-
�exivity is much easier to check, since it does not involve closure under the
operations of propositional logic. We illustrate the concept of re�exivity by
showing that the axiom schemes presented in Example 5.2.6 are also re�ex-
ive.

96

Example 5.2.9. The set of axiom schemes in Example 5.2.6
tt`[λ]tt [λ]φ ∧ [λ]ψ`[λ](φ ∧ ψ) [λa]φ`[λa]ψ

is re�exive. To see this, we show that
Lift(d)(

∧
Φ) ⊆ Lift(d)(

∨
Ψ) =⇒

∧
Φ`Lift(E)

∨
Ψ

for all �nite Φ,Ψ ⊆ Up(E), whenever (E,`E) is a preorder, which is re�ected
by d : E → P(C). So suppose∧

Φ =
∧
i∈I

[λ]φi ∧
∧
j∈J

[λaj]φj and
∨

Ψ =
∨

k∈K

[λ]ψk ∨
∨
l∈L

[λal
]ψl,

where φi, φj , ψk, ψl ∈ E and the aj , ak ∈ A. Consider (c0, a0) = (
⋂

i∈I d(φi), {aj |
j ∈ J}) ∈ Lift(d)(Φ). We have (c0, a0) ∈ Lift(d)(

∨
Ψ) and consider two cases.

Case 1: ∃k ∈ K.c0 ⊆ d(ψk). Hence ∧
i∈I ψi`Eψk. Using (op) and dis-

tributivity of conjunctions over [λ], we obtain ∧
i∈I [λ]ψi`Lift(E)[λ]ψk, and∧

Φ`Lift(E)

∨
Ψ by propositional entailment.

Case 2: ∃l ∈ L.al ∈ a0. By the de�nition of a0, there exists j ∈ J such
that aj = al. By axiom [λa]σ`[λa]τ , we obtain [λaj]φj`Lift(E)[λal

]ψl and∧
Φ`Lift(E)

∨
Ψ follows by propositional entailment.

We now show that re�exivity is in fact su�cient to obtain a complete ax-
iomatisation of local consequence.
Theorem 5.2.10 (Completeness). Suppose Ax is a re�exive set of axioms.

(i) If (E,`E) is a preorder and d : E → P(C) re�ects order, then so does

Lift(d) : Lift(E) → P(TC).

(ii) For all φ, ψ ∈ L, we have φ`ψ whenever φ |= ψ.

Proof. (i) By passing from arbitrary formulas to their conjunctive and
disjunctive normal form. Negative literals are treated using the equiv-
alences φ ∧ ¬ψ`ρ i� φ`ψ ∨ ρ and ρ`φ ∨ ¬ψ i� ρ ∧ ψ`φ.

(ii) Using (i), we obtain that φ`nψ whenever φ |=n ψ, for all n ∈ ω. The
claim follows as in the proof of Theorem 5.2.7.

This shows that re�exivity is actually equivalent to the fact that Lift(d)
re�ects order whenever d does. Turning back to Example 5.2.9, the preceding
theorem shows that the axiom schemes given in the example constitute a
complete axiomatisation of local consequence in the case of Kripke models.
In essence, the completeness proof was done by induction on the rank of
formulas. In particular, no canonical model construction has been used.

97

5.3 Finite Models and Decidability

This section shows how to use the tools developed in the previous sections
to show that � under additional assumptions on the endofunctor under con-
sideration � coalgebraic modal logic has the �nite model property, and local
consequence is decidable. We proceed as in (standard) modal logic and �rst
establish the �nite model property. Decidability then follows from the �nite
model property, if we can show, that �nite models can be e�ectively con-
structed. For the whole section, we �x a set Ax of axiom schemes which
we assume to be admissible and re�exive (in which case coalgebraic modal
logic is sound and complete, cf. Theorem 5.2.7 and 5.2.10). The �nite model
property states that every formula φ, which is satis�able (i.e. there exists
(C, γ) ∈ CoAlg(T) with [[φ]]γ 6= ∅), is satis�able in a �nite model (that is, for
some (C, γ) with �nite carrier C, we have [[φ]]γ 6= ∅). We show that every
formula, which is satis�able, is satis�able in a model with carrier Tn1, where
n is the rank of the formula. Hence the �nite model property follows, if Tn1
is a �nite set. This motivates the following:
De�nition 5.3.1. We call T �nite, if TX is �nite for �nite sets X.
Now consider, as in Lemma 5.1.9, a right inverse f0 : T1 → 1 of the unique
surjection e0 : T1 → 1 and let fn = Tnf .
Proposition 5.3.2. Suppose φ ∈ Ln is satis�able. Then φ is satis�able in

(Tn1, fn).

Proof. Since φ is satis�able, there exists a model (C, γ) with [[φ]]γ 6= ∅. By
Lemma 5.1.8, we have dn(φ) 6= ∅ and [[φ]]fn = fn

n
−1◦dn(φ). Since fn

n = idT n1

by Lemma 5.1.9, we have [[φ]]fn 6= ∅.

Assuming that T is �nite, we obtain the �nite model property for coalgebraic
modal logic:
Theorem 5.3.3 (Finite Model Property). Suppose T is �nite. Then

every satis�able formula is satis�able in a �nite model.

Proof. Suppose φ ∈ L is satis�able. By the previous proposition (using the
same notation), φ is satis�able in (Tn1, fn), where n = rank(φ). Finiteness
of Tn1 follows by induction using �niteness of T .

For propositional modal logic, we obtain
Example 5.3.4. Let TX = P(X) × P(A) for some �nite set A of atomic
propositions and consider the liftings introduced in Example 4.2.2. We have
that T is �nite, hence L has the �nite model property. If A were in�nite, we

98

could (in this example) still establish the �nite model property by arguing
that a formula φ only contains �nitely many liftings λa for a ∈ A, and
can hence be interpreted over coalgebras for T ′X = P(X) × P(A′), where
A′ = {a ∈ A | λa occurs in φ}.

From the �nite model property, one usually concludes decidability by show-
ing that �nite models can be e�ectively constructed. In the context of coal-
gebras for arbitrary endofunctors, e�ectivity has to be explicitely required:
We call T e�ective, if TX (for sets X) and Tf (for functions f) can be ef-
fectively computed from X and f , respectively. We call a predicate lifting λ
e�ective, if λ(X)(x) can be e�ectively obtained from X and x.
We leave it to the reader to formulate a precise de�nition of e�ectiveness
in terms of natural number codings. For e�ective and �nite functors T we
obtain decidability of local consequence from the �nite model property:
Theorem 5.3.5. Suppose T is �nite and e�ective and all λ ∈ Λ are e�ective.

Then the problem φ`ψ, where φ and ψ range over formulas in L, is decidable.

Proof. Clearly φ 6 `ψ i� φ ∧ ¬ψ is satis�able. By Proposition 5.3.2, φ ∧ ¬ψ
is satis�able in (Tn1, fn), where n is the rank of φ ∧ ¬ψ (which can be
e�ciently computed from φ and ψ). Since T is �nite, the set Tn1 is �nite,
and can be e�ectively obtained by assumption. Since all λ ∈ Λ are e�ective,
we can compute the semantics [[φ∧¬ψ]]fn ⊆ Tn1. Since Tn1 is �nite, we can
decide, whether [[φ ∧ ¬ψ]]fn is empty, that is, whether φ ∧ ¬ψ is satis�able
in Tn1.

Going back to Example 5.3.4, we thus �nd that local consequence is decidable
for standard modal logic.

5.4 Conclusions and Related Work

To our knowledge, the use of induction along the terminal sequence is a
novel approach to soundness, completeness and decidability proofs in modal
logic. Although we have instantiated the presented framework only to Kripke
models we remark that the framework can be instantiated with arbitrary
signature functors, obtaining logics for a large class of state based systems
(see [53] for examples).
Several approaches, including those taken in [27, 33, 49] use a canonical
model construction in order to obtain results akin to the ones presented.
The approach taken there applies to an inductively de�ned class of signature
functors and adapts the canonical model construction accordingly. Our ap-
proach is di�erent in that (a) it does not restrict us to an inductively de�ned

99

class of signature functors and (b) it uses induction rather than canonical
models as the main proof principle.
The only other approach to generalising modal logic to coalgebras of arbi-
trary (not syntactically de�ned) signature functors the author is aware of, is
the paper of Moss [39]. Given an endofunctor, the syntax of his coalgebraic
logic is obtained via an initial algebra construction. Consequently, Moss's
approach applies to a large class of endofunctors T , but at the expense of
an abstract syntax, which in particular lacks the notion of modal operators.
Also, the paper of Moss does not contain a complete axiomatisation. Finally,
we remark that, although we have just studied the one sorted case, the the-
ory generalises in a straight forward way to multi-sorted modal logic, that
is, to coalgebras for endofunctors T : Setn → Setn.
The material in this section is taken from [43].

5.5 Exercises

Exercise 5.5.1. Give a detailed proof of Theorem 5.2.10.
Exercise 5.5.2. Give a formal proof of the argument used in Example 5.3.4
and show, that local consequence for propositional modal logic is decidable,
even if the set of atomic propositions is in�nite.
Exercise 5.5.3. Find axioms for the signature functors discussed in Exer-
cise 4.5.3 and Exercise 4.5.4, which make the associated logics sound and
complete.

100

Bibliography

[1] Peter Aczel. Non-Well-Founded Sets. Center for the Study of Language
and Information, Stanford University, 1988.

[2] J. Adámek. Free algebras and automata realizations in the language of
categories. Comment. Math. Univ. Carolinae, 15:589�602, 1974.

[3] J. Adámek. From Varieties of Algebras to Covarieties of Coalgebras. In
A. Corradini, M. Lenisa, and U. Montanari, editors, Coalgebraic Meth-

ods in Computer Science (CMCS'01), volume 44.1 of Electr. Notes in

Theoret. Comp. Sci., 2001.
[4] J. Adámek and V. Koubek. On the greatest �xed point of a set functor.

Theor. Comp. Sci., 150:57�75, 1995.
[5] S. Awodey and J. Hughes. The coalgebraic dual of Birkho�'s variety

theorem. Technical Report CMU-PHIL-109, Carnegie Mellon Univer-
sity, November 2000.

[6] A. Baltag. A Logic for Coalgebraic Simulation. In H. Reichel, editor,
Coalgebraic Methods in Computer Science (CMCS'2000), volume 33 of
Electr. Notes in Theoret. Comp. Sci., 2000.

[7] M. Barr. Terminal coalgebras in well-fonded set theory. Theor. Comp.

Sci., 114:229�315, 1993. Korrigendum in Theor. Comp. Sci., 124:189-
192, 1993.

[8] M. Barr and C. Wells. Category Theory for Computing Science. Prentice
Hall, 1989.

[9] F. Bartels. Generalised Coinduction. In A. Corradini, M. Lenisa,
and U. Montanari, editors, Coalgebraic Methods in Computer Science

(CMCS'01), volume 44.1 of Electr. Notes in Theoret. Comp. Sci., 2001.
[10] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge

University Press, 2001.
101

[11] F. Borceux. Handbook of Categorical Algebra. Cambridge University
Press, 1994. 3 Volumes.

[12] A. Carboni, G. Kelly, and R. Wood. A 2-categorical approach to change
of base and geometric morphisms I. Technical Report 90-1, Dept. of
Pure Mathematics, Univ. of Sydney, 1990.

[13] A. Chagrov and M. Zakharyaschev. Modal Logic, volume 35 of Oxford
Logic Guides. Oxford Science Publications, 1997.

[14] Corina Cîrstea. An algebra-coalgebra framework for system speci�ca-
tion. In Horst Reichel, editor, Coalgebraic Methods in Computer Science

(CMCS'00), volume 33 of Electronic Notes in Theoretical Computer Sci-

ence, pages 81�112, 2000.
[15] E. Clarke, O. Gumbeg, and D. Peled. Model Checking. MIT Press, 1999.
[16] E.M. Clarke and H. Schlinglo�. Model checking. In A. Robinson and

A. Voronkov, editors, Handbook of Automated Reasoning, pages 1367�
1522. Elsevier, 2000.

[17] A. Corradini. A Complete Calculus for Equational Deduction in Coal-
gebraic Speci�cation. In F. Parisi-Presicce, editor, Recent Trends in

Algebraic Development Techniques, WADT 97, volume 1376 of Lect.
Notes in Comp. Sci. Springer, 1998.

[18] H. Geuvers. Inductive and coinductive types with iteration and recur-
sion. In B. Nordström, K. Petterson, and G. Plotkin, editors, Proc. of
the 1992 Workshop on Types for Proofs and Programs, 1992.

[19] R. Goldblatt. Logics of Time and Computation, volume 7 of CSLI Lec-
ture Notes. Center for the Study of Language and Information, Stanford
University, 1992. Second Edition.

[20] R. Goldblatt. Mathematics of Modality, volume 43 of CSLI Lecture

Notes. Center for the Study of Language and Information, Stanford
University, 1993.

[21] H. P. Gumm and T. Schröder. Products of coalgebras. Algebra Univer-

salis, 13:163�185, 2001.
[22] H. Peter Gumm. Elements of the general theory of coalgebras. LU-

ATCS'99, 1999.
[23] H. Peter Gumm. Equational and implicational classes of coalgebras.

Theoretical Computer Science, 260:57�69, 2001.
102

[24] M. Hennessy and R. Milner. On Observing Nondeterminism and Con-
currency. In J. W. de Bakker and J. van Leeuwen, editors, Automata,

Languages and Programming, 7th Colloquium, volume 85 of Lecture

Notes in Computer Science, pages 299�309. Springer-Verlag, 1980.
[25] R. Motwani J. Hopcroft and J. Ullman. Introduction to Automata The-

ory, Languages, and Computation. Addison Wesley, 2001.
[26] B. Jacobs. Objets and Classes, coalgebraically. In B. Freitag, C.B.

Jones, and C. Lengauer, editors, Object-Orientation with Parallelism

and Persistence. Kluwer, 1996.
[27] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic

study. Theoret. Informatics and Applications, 35(1):31�59, 2001.
[28] B. Jacobs and C. Hermida. Structural Induction and Coinduction in a

Fibrational Setting. Information and Computation, 145:107�152, 1998.
[29] B. Jacobs and J. Rutten. A Tutorial on (Co)Algebras and

(Co)Induction. EATCS Bulletin, 62:222�259, 1997.
[30] P. Johnstone, J. Power, T. Tujishita, H. Watanabe, and J. Worrell. On

the structure of categories of coalgebras. Theoretical Computer Science,
260:87�117, 2001.

[31] A. Kurz. A Co-Variety-Theorem for Modal Logic. In Proceedings of

Advances in Modal Logic 2, Uppsala, 1998. Center for the Study of
Language and Information, Stanford University, 2000.

[32] A. Kurz. Logics for Coalgebras and Applications to Computer Science.
PhD thesis, Universität München, April 2000.

[33] A. Kurz. Specifying Coalgebras with Modal Logic. Theor. Comp. Sci.,
260(1�2):119�138, 2001.

[34] A. Kurz and D. Pattinson. Notes on Coalgebras, Co-Fibrations and
Concurrency. In H. Reichel, editor, Coalgebraic Methods in Computer

Science (CMCS'2000), volume 33 of Electr. Notes in Theoret. Comp.

Sci., 2000.
[35] Alexander Kurz. Coalgebras and Modal Logic. 2001. Course Notes for

ESSLLI 2001.
[36] S. MacLane. Categories for the Working Mathematician. Springer, 1971.
[37] M. Makkai and R. Parè. Accessible Categories: The Foundations of

Categorical Model Theory. Number 104 in Contemporary Mathematics.
American Mathematical Society, 1989.

103

[38] R. Milner. Communication and Concurrency. International series in
computer science. Prentice Hall, 1989.

[39] L. Moss. Coalgebraic Logic. Annals of Pure and Applied Logic, 96:277�
317, 1999.

[40] T. Mossakowski, M. Roggenbach, and L. Schröder. Cocasl at work -
modelling process algebra. In H.-P Gumm, editor, Coalgebraic Methods

in Computer Science (CMCS 2003), Electronic Notes in Theoretical
Computer Science, pages 81�112, 2003. To appear.

[41] D. Park. Concurrency and Automata on In�nite Sequences. In
P. Deussen, editor, 5th GI Conference, volume 104 of Lect. Notes in

Comp. Sci. Springer, 1981.
[42] D. Pattinson. Semantical Principles in the Modal Logic of Coalgebras.

In H. Reichel and A. Ferreira, editors, Proc. 18th Symposium on The-

oretical Aspects of Computer Science (STACS 2001), volume 2010 of
Lect. Notes in Comp. Sci. Springer, 2001.

[43] D. Pattinson. Coalgebraic Modal Logic: Soundness, Completeness and
Decidability. Theor. Comp. Sci., 2003. To appear.

[44] Dirk Pattinson. Expressive logics for coalgebras via terminal sequence
induction. Technical report, Institut für Informatik, LMU München,
2002.

[45] Benjamin C. Pierce. Basic Category Theory for Computer Scientists.
MIT Press, 1991.

[46] J. Power and H. Watanabe. An axiomatics for categories of coalgebras.
In B. Jacobs, L. Moss, H. Reichel, and J. Rutten, editors, Coalgebraic
Methods in Computer Science (CMCS'98), volume 11 of Electr. Notes
in Theoret. Comp. Sci., 1998.

[47] H. Reichel. An Approach to Object Semantics based on Terminal Co-
algebras. Math. Struct. in Comp. Sci., 5:129�152, 1995.

[48] M. Röÿiger. Coalgebras and Modal Logic. In H. Reichel, editor, Coalge-
braic Methods in Computer Science (CMCS'2000), volume 33 of Electr.
Notes in Theoret. Comp. Sci., 2000.

[49] M. Röÿiger. From Modal Logic to Terminal Coalgebras. Theor. Comp.

Sci., 260:209�228, 2001.
[50] J. Rothe, B. Jacobs, and H. Tews. The Coalgebraic Class Speci�cation

Language CCSL. Journal of Universal Computer Science, 7, 2001.
104

[51] J. Rutten. Automata and coinduction (an exercise in coalgebra). In
D. Sangiorgi and R. de Simone, editors, Proc. CONCUR 1998, volume
1466 of Lect. Notes in Comp. Sci. Springer, 1998.

[52] J. Rutten. Relators and Metric Bisimulations. In B. Jacobs, L. Moss,
H. Reichel, and J. Rutten, editors, Coalgebraic Methods in Computer

Science (CMCS'98), volume 11 of Electr. Notes in Theoret. Comp. Sci.,
1999.

[53] J. Rutten. Universal Coalgebra: A theory of systems. Theor. Comp.

Sci., 249(1):3 � 80, 2000.
[54] Krister Segerberg. An essay in classical modal logic. Filoso�ska Studier

13, 1971.
[55] T. Sudkamp. Languages and Machines. Addison Wesley, 1998.
[56] D. Turi and G. Plotkin. Towards a mathematical operational seman-

tics. In Proc. 12th LICS Conf., pages 280�291. IEEE, Computer Society
Press, 1999.

[57] D. Turi and J. Rutten. On the foundations of �nal coalgebra seman-
tics: non-well-founded sets, partial orders, metric spaces. Mathematical

Structures in Computer Science, 8(5):481�540, 1998.
[58] T. Uustalu and V. Vene. Primitive (Co)Recursion and Course of Value

(Co)Iteration, Categorically. INFORMATICA (IMI, Lithuania), 10:5�
26, 1999.

[59] V. Vene and T. Uustalu. Functional Programming with Apomorphisms.
In 9th Nordic Workshop on Programming Theory, 1997.

[60] Wolfgang Wechler. Universal Algebra for Computer Scientists, vol-
ume 25 of EATCS Monographs on Theoretical Computer Science.
Springer, 1992.

[61] J. Worrell. Toposes of Coalgebras and Hidden Algebra. In B. Jacobs,
, L. Moss, H. Reichel, and J. Rutten, editors, Coalgebraic Methods in

Computer Science (CMCS'98), volume 11 of Electr. Notes in Theoret.

Comp. Sci., 1998.
[62] J. Worrell. Terminal Sequences for Accessible Endofunctors. In B. Ja-

cobs and J. Rutten, editors, Coalgebraic Methods in Computer Science

(CMCS'99), volume 19 of Electr. Notes in Theoret. Comp. Sci., 1999.

105

